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Elements of Clojure

Introduction
This book tries to put words to what most experienced pro-
grammers already know. This is necessary because, in the 
words of Michael Polanyi, “we can know more than we can 
tell.”
Our design choices are not the result of an ineluctable chain 
of logic; they come from a deeper place, one which is visceral 
and inarticulate.

Polanyi calls this “tacit knowledge”, a thing which we only 
understand as part of something else. When we speak, we 
do not focus on making sounds, we focus on our words. We 
understand the muscular act of speech, but would struggle 
to explain it.

To write software, we must learn where to draw boundaries. 
Good software is built through effective indirection.
We seem to have decided that this skill can only be learned 
through practice; it cannot be taught, except by example. Our 
decisions may improve with time, but not our ability to ex-
plain them.

It’s true that the study of these questions cannot yield a closed-
form solution for judging software design. We can make our 
software simple, but we cannot do the same to its problem 
domain, its users, or the physical world. Our tacit knowledge 
of this environment will always inform our designs.

This doesn’t mean that we can simply ignore our design pro-
cess. Polanyi tells us that tacit knowledge only suffices until 
we fail, and the software industry is awash with failure. Our 
designs may never be provably correct, but we can give voice 
to the intuition that shaped them. Our process may always 
be visceral, but it doesn’t have to be inarticulate.

And so this book does not offer knowledge, it offers clarity. It 
is aimed at readers who know Clojure, but struggle to artic-
ulate the rationale of their designs to themselves and others. 
Readers who use other languages, but have a passing famil-
iarity with Clojure, may also find this book useful.
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The first chapter, Names, explains why names define the 
structure of our software, and how to judge whether a name 
is any good.

The second chapter, Idioms, provides specific, syntactic ad-
vice for writing Clojure which is clean and readable.

The third chapter, Indirection, looks at how code can be 
made simpler and more robust through separation.

The final chapter, Composition, explores how the constit-
uent pieces of our code can be combined into an effective 
whole.
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Names
Names should be narrow and consistent. A narrow name 
clearly excludes things it cannot represent. A consistent 
name is easily understood by someone familiar with the 
surrounding code, the problem domain, and the broader 
Clojure ecosystem.

Consider this function:

(defn get-sol-jupiter 
  "Does a deep lookup of key `k` within m̀̀  under 
   :̀sol` and :̀jupiter̀ , returning ǹot-found` or 
   ǹil` if no such key exists." 
  ([m k]  
    (get-sol-jupiter m k nil))  
  ([m k not-found]  
    (get-in m [:sol :jupiter k] not-found)))

We name the first parameter m because it can represent any 
map, and naming it map would shadow the function of the 
same name. The second parameter is named k because it 
can represent any key, and avoid naming it key for the same 
reason. We name the optional third parameter not-found 
because that’s the name used by Clojure’s get function, as 
is the default value of nil.

The function name itself, however, is potentially confusing. 
Without reading the docstring or implementation, a reader 
might reasonably assume it did any of the following:

(get-in m [:sol-jupiter k]) 

(get (.sol-jupiter m) k) 

(http/get (str "http://sol-jupiter.com/" k))

This name introduces a lot of ambiguity, considering the 
function can be replaced by its implementation without los-
ing much concision:

(get-sol-jupiter m :callisto) 

(get-in m [:sol :jupiter :callisto])
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1.
‘Abstraction’ can 
describe this 
separation, but can 
also describe other, 
different concepts. 
‘Indirection’  
is preferable, because  
it is narrower.  
This distinction is 
expanded upon in the 
third chapter. 

But what if we were to change the name to describe its pur-
pose, rather than its implementation?

(get-jovian-moon m :callisto) 

(get-in m [:sol :jupiter :callisto])

Suddenly, the function begins to justify its existence. Jupi-
ter’s moons may be stored under [:sol :jupiter] for the 
moment, but that’s just an implementation detail, hidden 
away behind the name. Our name is now a layer of indirec-
tion, separating what the function does from how it does it. 
We can introduce even more indirection by renaming the 
first parameter:

(get-jovian-moon galaxy :callisto)

Now the data structure used for our galaxy is also an im-
plementation detail, hidden behind a name.

Indirection, also sometimes called abstraction1, is the foun-
dation of the software we write. Layers of indirection can 
be peeled away incrementally, allowing us to work within a 
codebase without understanding its entirety. Without indi-
rection, we’d be unable to write software longer than a few 
hundred lines.

Names are not the only means of creating indirection, but 
they are the most common. The act of writing software is 
the act of naming, repeated over and over again. It’s likely 
that software engineers create more names than any other 
profession. Given this, it’s curious how little time is spent 
discussing names in a typical computer science education. 
Even in books that focus on practical software engineering, 
names are seldom mentioned, if at all.

Luckily, other fields have given names more attention. Phi-
losophers, in particular, have a special fascination with 
names. In their terminology, the textual representation of 
a name is its sign, and the thing it refers to is its referent. 
Until the late 19th century, the prevailing theory was that 
signs and referents were arbitrarily related. A town named 
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Dartmouth doesn’t necessarily sit at the mouth of the Dart 
River. If it did, and the river dried up, the name wouldn’t 
have to change. In the right context, ‘Dartmouth’ might refer 
to a crater on the moon. The sign was just a means of point-
ing at something.

Then a logician named Gottlob Frege pointed out an issue: 
in Ancient Greece, there were two celestial bodies named 
Phosphorus (Morning Star) and Hesperus (Evening Star), both 
of which happened to be Venus. At first glance, this doesn’t 
seem to be a problem; both signs share a referent, so they’re 
just different ways of talking about Venus. But if Evening 
Star and Morning Star are just synonyms for each other, 
then these sentences should be interchangeable:

• Homer believed the Morning Star was the Morning Star.

• Homer believed the Morning Star was the Evening Star.

The first sentence is obviously true, but the second one is 
almost certainly false: that fact wasn’t discovered until hun-
dreds of years after Homer’s death. It’s clear, then, that they 
are not synonyms. We cannot only consider what a name 
references, we must also consider how it is referenced. Frege 
called this the sense of a name.2

We can construct a similar example using Clojure’s seman-
tics. Consider two vars, a and b:

(def a 42) 

(def b 42)

While a and b point to the same value, we cannot claim 
these two statements are equivalent:

(= a a) 

(= a b)

A var is a reference, a means of pointing at a referent. Clo-
jure does its best to blur the line between reference and refer-
ent; vars are automatically replaced by their runtime value.  

2. 
In the following 
century, many 
philosophers have 
expanded on Frege’s 
work, but their work 
isn’t directly relevant 
to names in software. 
Anyone interested  
in following this thread 
should begin with Saul 
Kripke’s Naming and 
Necessity.
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But references are a form of indirection, and this gives us a 
degree of freedom in how the code changes over time. While 
a and b are equal today, that may change tomorrow.

The sense of a var describes what it is, but also what we 
expect it to become. If we’ve defined separate vars for the 
same value, it’s because we expect them to diverge. They 
have the same referent but different senses.

Let’s consider a higher-level example: an id. We need a means 
of generating and representing unique identifiers, and after 
some discussion we settle on UUIDs, which are randomly 
generated 128-bit values. Typically, a UUID is displayed as a 
collection of hexadecimal characters and hyphens, such as 
4a4c7d8b-bb8a-441a-982f-80fc90e80e47.

Having settled on this implementation, we can consider two 
sentences:

• Our unique identifiers are unique.

• Our unique identifiers are 128-bit values.

The first sentence is true, but the second is only true for our 
chosen implementation. Should the implementation change, 
it might suddenly become false. Since the second sentence 
is not timelessly true, we must treat it as effectively false; 
anything else would enshrine the 128-bit implementation 
as permanent, constraining our future designs.

Our sign, in the philosophical sense, is a name’s textual rep-
resentation: in the case of our identifier, id. A name’s refer-
ent is what it points to: in our example, the UUID implemen-
tation. A name’s sense is the set of fundamental properties 
we ascribe to it: in this case, the identifier’s uniqueness. 
When we encounter a new name, we only need to under-
stand its sense. The underlying implementation, the refer-
ent, can change without us ever knowing or caring.

A narrow name reveals its sense. Narrow doesn’t necessari-
ly mean specific; a specific name captures most of an imple-
mentation, while a general name captures only a small part. 
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An overly general name obscures fundamental properties 
and invites breaking changes. An overly specific name ex-
poses the underlying implementation, making it difficult 
to change or ignore the incidental details. A narrow name 
finds a balance between the two.

Narrowness doesn’t only derive from our choice of sign; we 
prefer id to unique-arbitrary-string-id. The sense can 
be communicated through the surrounding code, through 
documentation, and through everyday conversation. This 
means that narrowness can be created or destroyed without 
ever touching the code. Carelessly substituting uuid for id in 
emails will distort the sense, no matter how clear our docu-
mentation. Without constant care, narrowness may disappear.

This is especially difficult because the sense can remain un-
spoken. In the case of the Morning and Evening Star, differing 
senses came with differing signs, but in practice this is rarely 
true. An engineer working on the serialization format for the 
id may decide to use the 128-bit encoding, implicitly treat-
ing that encoding as a fundamental property. Another engi-
neer working on a log parser might write a regex that looks 
for 36 hexadecimal and hyphen characters, implicitly doing 
the same. Both can have a reasonable conversation about ids 
without any hint that they are speaking past each other.

This is not a problem that can be fully solved. We speak am-
biguous words, we think ambiguous thoughts, and any proj-
ect involving multiple people exists in a continuous state 
of low-level confusion. It is, however, a problem that can be 
minimized through consistency.

A name whose sense is consistent with the reader’s expecta-
tions requires less effort from everyone. If the map function 
is redefined within a namespace to return a data structure, 
this must be carefully documented. Readers must deliber-
ately remember what context a map exists in, and will begin 
to second-guess their intuitive understanding of the code. 
The code and documentation, then, must clarify what sort 
of map is being discussed everywhere, not just within the in-
consistent namespace.
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Even if we clearly communicate the sense of a name, there 
can still be inconsistencies between the sense and the ref-
erent. Our id example suffers from this; our identifier is 
unique, but UUIDs are only very likely to be unique. If a poor 
random-number generator is used, collisions between gener-
ated identifiers are not only possible, but plausible. Unless we 
redefine our identifiers as “probably unique”, the assumption 
of uniqueness will be baked into the surrounding code.

If this is a design flaw, it is a flaw shared across a wide vari-
ety of software. We can poke similar low-probability holes 
in most invariants using cosmic rays, data corruption that 
still satisfies checksums, and so on. Errors caused by these 
inconsistencies can be very expensive; they can only be un-
derstood by someone familiar with the implementation and 
the assumptions made in the surrounding code. Despite 
this, checking to determine whether every UUID is unique 
is impractical. An inconsistent name is not necessarily a 
bad name.

Often, we can only choose how we wish to be inconsistent. 
Consider a datatype called student in software used for 
university administration. The intuitive sense of this name 
will differ by department:

• For the admissions office, a student is anyone eligible to 
apply to the university.

• For the bursar’s office, a student is anyone attending the 
university.

• For the faculty, a student is anyone registered for classes.

If each department writes their own software, each can use 
student without confusion. A sign’s sense is inferred from 
its context, and defining separate contexts allows us to re-
use it. More typically, we’d put each department in its own 
namespace, but then we risk the admissions namespace 
invoking the bursar namespace with the wrong kind of 
student. Keeping contexts separate requires continuous 
effort by the reader, and failing to keep them separate cre-
ates subtle misunderstandings.
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If we avoid separate contexts, our datatype can only be as 
narrow as its most general case. If student represents any-
one who might apply to the university, then our sense is only 
consistent for the admissions department. To be consistent 
for everyone, we’d have to create different names for each 
sense and use student for none of them.

In other words, the only way to be fully consistent is to have 
a one-to-one relationship between signs and senses. This 
means that we must invent a sign for each sense, but also 
that readers must agree on their sense. This is why student 
must be avoided at all costs: a dozen different readers might 
ascribe a dozen different senses. Most natural names have 
a rich, varied collection of senses.3 To avoid ambiguity we 
must use synthetic names, which have no intuitive sense in 
the context of our code.

Category theory is a rich source of synthetic names. ‘Monad’, 
to most readers, means nothing. As a result, we can define 
it to mean anything. Synthetic names turn comprehension 
into a binary proposition: either you understand it or you 
don’t. Between experts, synthetic names can be used to 
communicate without ambiguity. Novices are forced to ei-
ther learn or walk away.

Conversely, a natural name is at first understood as one of 
its many senses. Everyone understands, more or less, what 
an id is. In a large group, however, these understandings 
might have small but important differences. These under-
standings are refined, and gradually converge, through 
examination of the documentation and code. At the cost of 
some ambiguity, novices are able to participate right away.

Natural names allow every reader, novice or expert, to rea-
son by analogy. Reasoning by analogy is a powerful tool, es-
pecially when our software models and interacts with the 
real world. Synthetic names defy analogies,4 and prevent 
novices from understanding even the basic intent behind 
your code. Choose accordingly.

3. 
The ambiguity and 
utility of everyday 
names is explored 
more fully in William 
Kent’s Data and 
Reality, which  
was published in  
the late 1970s just  
as relational 
databases were 
coming into vogue. 

4. 
Of course, people  
will still try. This is how 
the monad became a 
burrito.
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Naming Data
Every var, let-bound value, and function parameter must 
be named. When we define a var representing immutable 
data, we control both the sign and referent:

(def errors #{:too-hot :too-cold})

However, we do not control the sense; two people can rea-
sonably disagree over whether :too-hard and :too-soft 
should be added to the set. Even if we narrow our names, the 
problem persists:

(def porridge-errors #{:too-hot :too-cold}) 

(def bed-errors #{:too-hard :too-soft})

Can we add :too-watery and :too-gummy to por-
ridge-errors, even if Goldilocks never had those specific 
complaints? We can sidestep this issue by never changing 
the value:

;; DO NOT CHANGE UNDER PENALTY OF HEAT DEATH 

(def errors #{:too-hot :too-cold})

But if the data will truly never change, we should consider 
whether it belongs in a var. We prefer Math/PI to 3.14..., 
because it’s shorter and prevents subtle copy-paste errors. 
If errors is used in multiple places, and we don’t want to 
put threats next to all of them, keeping it around is reason-
able. Otherwise, it may be best to replace errors with its 
value.

When we define a function parameter, we only control the 
sign; the data it represents could be literally anything. This 
problem is exacerbated by Clojure’s lack of a type system, 
but even in languages with sophisticated type systems, most 
types can encode values that fall outside the type’s sense; 
we might represent an id using a 128-bit value, but not all 
possible 128-bit values are valid identifiers in our system. 
Dependent type systems, like those used in Agda and Idris, 
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try to address this problem by narrowing the possible val-
ues that the type can represent. But even these languages 
don’t prevent us from making simplistic assumptions or 
protect us from the consequences when the world doesn’t 
conform to them. Type systems are a tool, not a solution.

If a parameter’s sense assumes certain invariants, we can 
enforce them at the top of the function. The relationship 
between our functions is not adversarial; we do not need 
to check and re-check invariants at every level of our sys-
tem. The relationship between our software and the outside 
world, however, can be adversarial. Most invariant checks 
should exist at the periphery of our code.

When defining a let-bound value we control the sign, but 
we also control the right side of the let binding. While a 
function parameter’s value may be unconstrained, a let-
bound value is constrained by all the code that precedes it.

Names provide indirection. For vars, the indirection hides 
the underlying value. For function parameters, the indirec-
tion hides the implementation of the invoking functions. For 
let-bound values, the indirection hides the right-hand ex-
pression:

(let [europa    ... 

      callisto  ... 

      ganymede  ...] 

  (f europa callisto ganymede))

In this expression, if it’s self-evident what europa, callis-
to, and ganymede represent, then the right side of the let 
binding can be ignored. The right side is a deeper level of 
the code, relevant only if the what of europa doesn’t satisfy, 
and we need to understand the how.

This is possibly Clojure’s most important property: the syn-
tax expresses the code’s semantic layers. An experienced 
reader of Clojure can skip over most of the code and have a 
lossless understanding of its high-level intent.
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Of course, this is only true when we avoid side effects. If the 
right side of a let-binding does something more than re-
turn a value, we have to read it exhaustively to reason about 
how it affects the surrounding code. Readers’ ability to safe-
ly skim Clojure relies on both its syntax and its emphasis on 
immutability.

The threshold for self-evidency depends on the reader. Ev-
ery name we create seems self-evident as we create it. Six 
months later, it may seem less so. A reader with domain ex-
pertise and no engineering background will find only a sub-
set of names self-evident. An experienced engineer with no 
domain knowledge will find a different subset to be self-ev-
ident.

Each time they encounter an unfamiliar name, readers 
must dive deeper into the code and documentation. In the 
limit case, where every name is unfamiliar and no name is 
used twice, readers would have to read everything to make 
sense of anything. However, if we choose consistent names, 
only a few deep dives are required to understand the core 
concepts.

Code buried deep under layers of indirection will have a 
smaller, more determined audience. From that audience, 
we can expect familiarity with names used elsewhere in the 
code, and a willingness to understand unfamiliar concepts. 
Names at the topmost layers of the code will be read by nov-
ices and experts alike, and should be chosen accordingly.

Where a value is used repeatedly, we may prefer to use a 
short name rather than a self-evident one. Consider this 
code:

(doseq [g (->> planets  

            (remove gas-planet?)  

            (map surface-gravity))] 

  ...)
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If we renamed g to surface-gravity, most readers could 
understand the intent without reading the right-hand ex-
pression. Unfortunately, this shadows the function of the 
same name and is fairly verbose. By itself, though, g doesn’t 
mean anything. The reader is forced to carefully read both 
sides of the binding to understand the intent.

If the left-hand name isn’t self-evident, the right-hand ex-
pression should be as simple as possible. This is preferable 
to the above example:

(let [surface-gravities (->> planets  

                          (remove gas-planet?)  

                          (map surface-gravity))] 

  (doseq [g surface-gravities] 

    ...))

Finding good names is difficult, so wherever possible we 
should avoid trying. If we’re performing a series of transfor-
mations on data, we shouldn’t name every intermediate re-
sult. Instead, we can compose the transformations together 
using —>> or some other threading operator.

If a function’s implementation is more self-explanatory than 
any name you can think of, it should be an anonymous func-
tion. This can be true even for relatively complex functions. 
A large function, named or anonymous, asserts that it can-
not be made easier to understand using indirection. A large 
function is not necessarily a bad function.

If a function has grown unwieldy, but you can’t think of any 
good names for its pieces, leave it be. Perhaps the names 
will come to you in time.
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There cannot be hard and fast guidelines for choosing a 
good name, since they have to be judged within their con-
text, but where the context doesn’t call for something spe-
cial, there can be a reasonable collection of defaults. The de-
faults given here are not exhaustive and mostly come from 
common practices in the Clojure ecosystem. In a codebase 
with different practices, those should be preferred.

If a value can be anything, we should call it x and limit our 
operations to =, hash, and str. We may also call something 
x if it represents a diverse range of datatypes; we prefer x 
to string-or-float-or-map, but those possible datatypes 
must be explicitly documented somewhere.

If a value is a sequence of anything, we should call it xs. If 
it is a map of any key onto any value, it should be called m. If 
it is an arbitrary function, we should call it f. Sequences of 
maps and functions should be called ms and fs, respectively.

A self-reference in a protocol, deftype, or anonymous func-
tion should be called this.

If a function takes a list of many arguments with the same 
datatype, the parameters should be called [a b c ... & 
rst], and the shared datatype should be clearly documented.

If a value is an arbitrary Clojure expression, it should be 
called form. If a macro takes many expressions, the variad-
ic parameter should be called body.

However, for most code we’re able to use narrower names. 
Let’s consider a student datatype, which is represented as 
a map whose keys and values are well defined using either 
documentation or a formal schema. Anything called stu-
dent should have at least these entries, and sometimes only 
these entries.

The name students represents a sequence of students. 
Usually these sequences are not arbitrary; all students 
might, for instance, attend the same class. Any property 
shared by these students should either be clear from the 
context or clearly documented.
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A map with well-defined datatypes for its keys and values 
should be called key—>value. A map of classes onto attend-
ing students, for instance, should be called class—>stu-
dents. This convention extends to nested maps as well; a 
map of departments onto classes onto students should be 
called department—>class—>students.

A tuple of different datatypes should be called a+b. A 2-vec-
tor containing a tutor and the student they’re tutoring 
should be called tutor+student. A sequence of these tu-
ples should be called tutor+students.

Notice that tutor+students is ambiguous; it can either be 
a sequence of tutor+student tuples or a single tuple con-
taining students. Likewise, class—>students might be 
a single map, or a sequence of class—>student maps. Of-
ten, it’s clear from context which is meant, but otherwise we 
have to create a name for our compound datatype. If we call 
our tutor-and-student tuple a tutelage, then we can refer 
to tutelages without ambiguity.

But tutelage is a synthetic name, as are most names for 
compound data structures.5 As such, we need to carefully 
document their meaning and only use them where our read-
ers will have read the documentation. The naming conven-
tions given here, like anonymous functions and threading 
operators, are a way to avoid introducing new names until 
absolutely necessary.

5. 
The English language 
rarely anticipates our 
need for a particular 
permutation of nouns.
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6. 
This asymmetry,  
and the broader 
concept of isolated 
data scopes, is 
discussed in greater 
detail in the final 
chapter, Composition.

7. 
Only trivial processes, 
like echo or cat in 
Unix, do not perform 
all three actions. This 
is also expanded upon 
in the last chapter.

Naming Functions
At runtime, our data scope is any data we can see from within 
our thread. It encompasses function parameters, let-bound 
values, closed-over values, and global vars. Functions can 
do three things: pull new data into scope, transform data al-
ready in scope, or push data into another scope. When we 
take values from a queue, we are pulling new data into our 
scope. When we put values onto a queue, we are making data 
available to other scopes. HTTP GET and POST requests can 
be seen as pulling and pushing, respectively.

Shared mutable state creates asymmetric scopes. Consider 
a public var representing an atom:

(def unusual-events (atom 0))

Any thread can dereference this atom; the current count is 
within scope for every thread within our process. However, 
if we increment unusual-events we are taking informa-
tion local to our thread and making it visible to all the oth-
ers. Reading from the shared mutable state isn’t a pull, but 
writing to it is a push.6

Most functions should only push, pull, or transform data. At 
least one function in every process must do all three,7 but 
these combined functions are difficult to reuse. Separate ac-
tions should be defined separately and then composed.

If a function crosses data scope boundaries, there should 
be a verb in the name. If it pulls data from another scope, it 
should describe the datatype it returns. If it pushes data into 
another scope, it should describe the effect it has. Some-
times functions simultaneously push and pull data, usual-
ly for reasons of efficiency; in these cases the name should 
capture both aspects, and the documentation should care-
fully explain the specific behavior.

If a function takes an id and returns a binary payload, it 
should be called get-payload. If it takes an id and deletes 
the payload, it should be called delete-payload. If it takes 
an id, replaces the payload with a compressed version, and 
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returns the result, it should be called compress-and-get-
payload.

If these functions are in a namespace specific to payloads, 
they can simply be called get, delete, and compress-
and-get. We can assume that other namespaces will refer 
to our namespace with a prefix, such as payload/get or  
p/get. This means that shadowing Clojure functions like 
get8 is safe and useful, but we should take care to specify 
this at the top of our namespace:

(ns application.data.payload 

  (:refer-clojure :exclude [get]))

This signals to our readers that get means something else 
in this namespace. We should also define our get at the bot-
tom of the namespace. Then, if we mistakenly use get in-
stead of clojure.core/get somewhere in the middle, the 
compiler will complain that get is an invalid symbol rather 
than silently use our alternate implementation.

If a function only transforms data, we should avoid verbs 
wherever possible. A function that calculates an MD5 hash, 
defined in our payload namespace, should be called md5. 
A function that returns the timestamp of the payload’s last 
modification can be called timestamp, or last-modified 
if there are other timestamps.9 A function that converts the 
payload to a Base64 encoding should be called —>base64. In 
a less narrow namespace, these functions should be named 
payload-md5 and payload—>base64.

However, when modifying data we often have to use a verb. 
If a function takes a data structure representing a university 
and returns a university with a student added to a particu-
lar department, the function should be called add-student. 
This name, taken alone, is ambiguous as to whether the stu-
dent is being added to a department or to the university as 
a whole. Since the function will be invoked with a depart-
ment parameter, however, this should be immediately clear 
in context.

8. 
In any place but 
Clojure’s core 
implementation,  
get should imply  
pulling data from 
another scope.

9. 
This means that  
the example function 
at the beginning of  
the chapter should 
lose the get and 
simply be called 
jovian-moon. 
It’s cleaner.
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Some verbs, like conj and assoc, are obviously related to 
data transformation. Most verbs, though, are ambiguous. In 
some codebases, functions that affect external data scopes 
have a ! added to the end of their name. However, this con-
vention is not universal, even among core Clojure functions. 
Even if your code uses the ! marker, the best way to keep 
things clear for your readers is to avoid impure functions 
where possible and document where necessary.

In theory, a namespace can hold an unlimited number of 
functions as long as none of them share the same name. In 
practice, namespaces should hold functions that share a 
common purpose so that the namespace lends narrowness 
to the names inside it.

Typically, this means that all the functions should operate 
on a common datatype, a common data scope, or both. If all 
the functions in a namespace operate on a binary payload, 
we can safely omit payload from all the names. If all the 
functions in a namespace are used to communicate with a 
database, we can easily understand the scope of the func-
tions. If all the functions in a namespace are used to access 
a particular datatype in a database, we can both use shorter 
names and easily understand the data scope.

A large number of namespaces is taxing for our readers; 
if we have ten tables in a database, creating ten different 
namespaces just so we can write europa/get rather than 
db/get-europa has questionable value. Therefore, we 
should add new namespaces only when necessary. By ques-
tioning the need for new namespaces, we implicitly ques-
tion the need for new datatypes and data scopes, which will 
lead to simpler code overall.
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Naming Macros
There are two kinds of macros: those that we understand 
syntactically, and those that we understand semantically. 
The with-open macro is best understood syntactically:

(defmacro with-open [[sym form] & body] 

  (̀let [~sym ~form] 

     (try 

       ~@body 

       (finally 

         (.close ~sym)))))

If we fail to type-hint sym as java.io.Closeable or some-
thing similar, our with-open form will give a reflection 
warning about a close method. Anyone who doesn’t know 
the macroexpanded form of with-open will search their 
code for some reference to close, find nothing, and be per-
plexed. To use with-open effectively, we must macroex-
pand it in our heads whenever it appears in the code.

Macros that we understand syntactically require us to un-
derstand their implementation, so they are a poor means of 
indirection. They can reduce the volume of our code but not 
its conceptual burden. A good name will tell the reader that 
it is a macro and prompt them to look at the implementation. 
Any name with a with prefix, or which uses the name of a 
Clojure special form like def or let, should have a predict-
able macroexpanded form.

If we expect our code to have a small audience, these mac-
ros may become quite large. This can be especially useful to 
reduce code size in the lower levels of the code, or in tests. In 
these cases, the macros should be defined and used within 
a single namespace; the name is unimportant as long as it 
isn’t misleading.

However, some macros are too complex to be under-
stood through their macroexpanded form. The go form in  
core.async is one such macro; not even the authors can 
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easily describe the macroexpansion for arbitrary code. In 
these cases, we must understand the semantics of the trans-
formation. Transforming arbitrary code is difficult and 
sometimes impossible; the go macro, for instance, skips 
over any anonymous functions defined in its scope. Read-
ers must not only understand the semantics of the transfor-
mation but also its exceptions and failure modes. For this 
reason, macros that we understand semantically are also a 
poor means of indirection.

Since macros cannot be self-evident, the clarity of the mac-
roexpanded syntax or semantics matters more than the 
clarity of the name. Macro names are usually synthetic and 
require careful documentation.

Names should be consistent. They should build upon their 
associations within the code and within natural language. 
Natural names are a powerful, but broad, means of commu-
nicating the sense of a name. Synthetic names are, by defi-
nition, inconsistent. They prevent readers from reasoning 
by analogy and bringing their own intuition to bear upon 
the problem of understanding the intent behind the code.

Names should be narrow. They should communicate their 
sense without potential for confusion. Natural names have 
many senses, and they allow groups to assume different 
senses for the same sign without ever realizing it. These dis-
parate senses will only converge over time through careful, 
deliberate communication. The learning curve for a syn-
thetic name, on the other hand, is a sheer cliff.

Narrowness and consistency are often in tension. Finding 
balance requires understanding your audience. Synthet-
ic names have little downside for an audience that already 
understands them and enable them to communicate com-
plex ideas. For novices, each synthetic name represents an 
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obstacle that must be surmounted. Natural names allow for 
continuous progress but at the risk of misunderstandings 
along the way. In different parts of your code, the size and 
makeup of the audience will vary. The audience will also 
change over time; success with an expert audience will in-
evitably attract less-expert readers.

Names are a fundamental medium for communicating with 
your readers. The concepts and terminology in this chapter 
are not a formula for choosing perfect names, but they will 
give you the tools to enumerate and discuss your options. 
These concepts will be used in subsequent chapters to dis-
cuss other design considerations when writing Clojure.
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Idioms
Software is understood layer by layer. At each layer, readers 
will guess at the underlying intent. As they descend, they’ll 
sometimes be proven wrong. Once they stop,10 they’ll have 
only their intuition, and any counterexamples found along 
the way, to suggest what lies beneath.

A confident reader will, at first, only read the top-most lay-
ers of the code. Each time they’re proven wrong, this con-
fidence is chipped away. Self-doubt may drive readers to 
delve deep into the code or may simply drive them away.

Each new layer, if it represents meaningful indirection, 
should reveal something new. Yet the lessons learned along 
the way should remain valid; an unfamiliar implementa-
tion should represent an unfamiliar idea, not just pointless 
variation on something we already understand. Each sur-
prise should be meaningful, and any software which con-
stantly surprises its readers is poorly written.

Idioms provide a mapping between code structure and in-
tent. Consistently used, they allow readers to trust their own 
intuition. Some of the idioms described here have naturally 
developed in the Clojure community, and others would ben-
efit the community if they saw wider use. This chapter will 
present each in turn, explain its underlying rationale, and 
explore when it might not be appropriate.

10. 
And everyone has 
to stop, eventually. 
Drilling past sixty 
years of accreted 
indirection is more 
than a life’s work.
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When using inequalities, prefer < and <=
A lifetime of infix notation is hard to shake. Even if prefix 
notation for arithmetic is more consistent, for most readers 
it will never feel quite natural.

Addition and multiplication are fairly familiar; + returns 
the sum of everything to its right, and * returns the product.

Subtraction and division are a bit more complicated. The 
expression (- a b) reads clearly, but most readers will 
have to pause to remember whether (- a b c) is left or 
right associative. A useful mnemonic here is to think of

• (- a b c …) as (- a (+ b c …)); and

• (/ a b c …) as (/ a (* b c …))

but it’s usually best to write this out explicitly.

But the most confusing operators, by far, are the inequal-
ities. As children, we were often taught the meaning of  
3 > 1 by giving the > tiny teeth, transforming it into a hun-
gry alligator that always wants to eat the largest number. 
Here the infix notation isn’t an incidental detail; it’s central 
to our mental model.

Small wonder, then, that (> a b) is difficult to read. The 
> doesn’t point at anything; we have to move it over by one 
term before realizing that the hungry alligator wants to eat 
a. Here, too, there is a useful mnemonic: we can think of > 
as a downward slope, and < as an upward slope. This way, 
we can read (> a b c) as a descending collection of values 
from a to c and (< a b c) as ascending.

Even with this mnemonic, readers can get confused. Sub-
traction and division, at least, have a fixed relationship 
between the left and right terms. With each inequality, we 
have to decide anew whether to use (< a b) or (> b a). 
Almost always, this decision is arbitrary; we can reduce the 
burden on the reader by choosing one and sticking with it.
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Inequalities should be ordered least to greatest, except 
where reordering terms hurts code clarity.

(cond 

  (< a b) ... 

  (= a b) ... 

  (> a b) ...) 

   

(cond 

  (< a b) ... 

  (= a b) ... 

  (< b a) ...)

Here, the first version reads more cleanly, even though 
it uses >. A typical exception to this rule will be a similar 
collection of almost-identical predicates, where we’d rather 
change the operator than the terms.
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If a function accumulates values, support every arity
Typically, when calling reduce we pass in a 2-arity function, 
like so:

(reduce (fn [x y] (+ x y)) numbers)

However, if numbers has zero arguments in it, reduce will 
invoke our function with zero arguments, throwing an ex-
ception. This wouldn’t be a problem if we provided an initial 
value:

(reduce (fn [x y] (+ x y)) 0 numbers)

In this case, if numbers has zero arguments in it, reduce 
will return 0. If numbers has one argument in it, reduce 
will invoke our function with 0 and the first element. How-
ever, many built-in Clojure functions provide their own ini-
tial value:

> (+) 

0 
 

> (+ 1) 

1 
 

> (conj) 

[] 
 

> (conj [1]) 

[1] 
 

> (concat)  

() 
 

> (concat [1]) 

(1)
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In each of these three cases, the 0-arity method returns a 
base value, the 1-arity method returns the same value it was 
passed, and the 2-arity case combines the two parameters. 
For larger arities, they perform a reduction:

(defn concat 

  ... 

  ([a b & rst] 

    (reduce concat (concat a b) rst)))

In some circles, this is referred to as a monoid, which is a 
0-arity function that returns an identity value and a 2-arity 
function that takes two values of the same type and returns 
a single combined value. Combining the identity value with 
any other value returns that value unchanged.

A common example of this is a set, whose 0-arity function 
returns an empty set, and 2-arity function returns the union 
of the two sets.

(require '[clojure.set :as set]) 

 

> (set/union) 

#{} 

 

> (set/union #{1}) 

#{1} 

 

> (set/union #{1 2} #{2 3}) 

#{1 2 3}

Unlike concat, +, and set/union, conj combines dissim-
ilar types: the first parameter is a collection, and all subse-
quent parameters are elements. For this reason, it’s not a 
monoid, but the underlying implementation looks very fa-
miliar:11

11. 
Neither the conj  
nor concat 
implementations  
shown here are  
identical to what’s in 
clojure.core, but 
they are equivalent.
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(defn conj 

  ... 

  ([coll x & rst] 

    (reduce conj (conj coll x) rst)))

This is because reduce allows dissimilar types. We can use 
reduce with monoids that combine values, but also with any 
function that accumulates values like conj. This is true even 
for functions on specialized datatypes, like concat-stu-
dents or conj-moon. Any such function should support 0, 
1, and 2-arity calls and also have a variadic implementation.

Of these arities, only the 0 and 2-arity cases are interesting; 
the 1-arity implementation simply returns the value, and 
the variadic implementation is a reduction. The value re-
turned by the 0-arity function isn’t always obvious; conj re-
turns a vector even though it can also aggregate using maps, 
sets, and lists. Whatever the value, it should be a reasonable 
default for most uses.

Implementing every arity isn’t worthwhile if a function is 
seldom used and unlikely to be used more in the future. It 
should also be avoided if there is no appropriate default 
0-arity value. In these cases, we can provide only a 2-ari-
ty method, which forces every call to reduce to provide its 
own initial value.
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Use option maps, not named parameters
If a function takes multiple parameters with default values, 
we’re forced to sort them by importance.

(defn pi 

  “Calculates pi to ǹ̀  digits, with optional 

   parameters for whether it should be done  

   efficiently and correctly.

   Both default to `truè .”

  ([n] 

    (pi n true)) 

  ([n efficiently?] 

    (pi n efficiently? true) 

  ([n efficiently? correctly?] 

    (cond 

      (not correctly?)    

      3.0

      (not efficiently?)  

      (->> (repeatedly #(pi n)) 

        (take 100) 

        last)

      :else               

      (math/pi-to-n-digits n))))

Here, if we specify correctly?, we’ll also have to specify 
efficiently?, even though one obviates the other. This is 
true for any function which represents optional parameters 
using multiple arities: if we specify one parameter, we have 
to specify all the parameters that come before it. To do this 
effectively, we have to carefully think about which parame-
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ters are more likely to be specified. With even two or three 
parameters, there’s rarely a clear hierarchy. With the dozen 
or more parameters required by complex APIs or applica-
tion logic, it’s a lost cause.

So instead, we can specify our parameters by name rather 
than position:

(defn pi 

  [n &  

   {:keys [efficiently?  

           correctly?] 

    :or   {efficiently? true 

           correctly?   true}}] 

  ...)

We’ve defined n as a positional parameter because it’s re-
quired, and we’ve left all the others as named options. Now, 
calculating pi incorrectly only requires (pi n :correctly? 
false).

Parameters we don’t wish to specify can be ignored. De-
faults can be changed, and parameters added, without ever 
having to update the call sites. For any function with more 
than one optional parameter, this has obvious benefits.

This convenience, however, does not come free. With each 
invocation, we must build a hash-map and then look up 
each key in turn. For even moderately complex functions, 
this can add noticeable overhead.

Also, functions with named parameters don’t cleanly com-
pose. Let’s assume that our internal function math/pi-to-
n-digits also takes some named parameters, and we want 
pass all of our parameters one level deeper:
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First, we take the parameters passed into pi and construct a 
hash-map called options. But since our inner function also 
expects individual parameters, we then flatten the map back 
into a list using (apply concat) and then apply that list 
to math/pi-to-n-digits. Option parameters read nicely 
when they’re written out by hand, but everywhere else they 
add complexity and noise.

While we write the parameters only once, they typically pass 
through many layers of our code. This is especially true for 
the top-level configurations for an application; the parame-
ters are provided at the entry point for the process and have 
to propagate into many different parts of the code. Fortu-
nately, we can solve this by merely removing the & symbol:

(defn pi 

  [n &  

   {:keys [efficiently?  

           correctly?] 

    :or   {efficiently? true 

           correctly?   true} 

    :as   options}] 

  (cond 

    (not correctly?)    

    3.0

    (not efficiently?)  

    (->> (repeatedly #(pi n)) 

      (take 100) 

      last)                   

    :else               

    (->> options 

      (apply concat) 

      (apply math/pi-to-n-digits n))))
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(defn pi 

  [n &  

   {:keys [efficiently?  

           correctly?] 

    :or   {efficiently? true 

           correctly?   true} 

    :as   options}] 

  (cond 

    (not correctly?)    

    3.0

    (not efficiently?)  

    (->> (repeatedly #(pi n)) 

      (take 100) 

      last)                   

    :else               

    (->> options 

      (apply concat) 

      (apply math/pi-to-n-digits n))))

Here, our options are contained in a map. No additional data 
structures need to be created, and the map can be passed 
as-is into our inner function. Any function which accepts 
optional named values should use this approach. The only 
cost relative to named parameters is writing out an extra 
pair of curly braces. However, both approaches introduce 
measurable overhead; in performance-sensitive contexts, 
we should only use positional parameters.

The natural shape for a collection of options is a map. 
Named parameters introduce complexity because, when 
invoked, they force us to turn that map into something else. 
But if we only ever write out the parameters by hand, they’re 
harmless. In practice, this is only ever true of macros; any 
function we write will eventually be wrapped in another 
function. Use named parameters sparingly, or not at all.

(defn pi 

  [n 

   {:keys [efficiently?  

           correctly?] 

    :or   {efficiently? true 

           correctly?   true} 

    :as   options}] 

  (cond 

    (not correctly?)    

    3.0

    (not efficiently?)  

    (->> (repeatedly #(pi n {})) 

      (take 100) 

      last)

    :else               

    (math/pi-to-n-digits n options)))
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No one should have to know you’ve used binding
Months ago, in the distant past, we wrote these functions:

(defn a [x] 

  (b x)) 

   

(defn b [x] 

  (c x)) 

   

(defn c [x] 

  (library/compute x))

Today, after updating our dependencies, we discover that 
library/compute now has an additional Boolean param-
eter which makes everything go faster. Unfortunately, a few 
parts of our code can’t handle the raw speed, so we have 
to make this optional. Since a is our public API, we have to 
thread the parameter all the way through:

(defn a [x turbo-mode?] 

  (b x turbo-mode?)) 

   

(defn b [x turbo-mode?] 

  (c x turbo-mode?)) 

   

(defn c [x turbo-mode?] 

  (library/compute x turbo-mode?))

But once we start adding true and false to every invoca-
tion, we realize that turbo-mode? is almost always true, so 
we add default values:
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(defn a 

  ([x]  

    (a x true))  

  ([x turbo-mode?] 

    (b x turbo-mode?)) 

   

(defn b [x turbo-mode?] 

  (c x turbo-mode?)) 

   

(defn c [x turbo-mode?] 

  (library/compute x turbo-mode?))

This works. Our refactoring is now limited to the parts of 
our codebase which relied on library/compute being slow. 
The cost, however, is high: we’ve added a positional param-
eter which is almost never used. If we ever add more param-
eters, we’ll either have to switch to an option map or start 
specifying turbo-mode? everywhere just so we can specify 
the new parameter. Any new functions that call b or c will 
also pay this tax.

Discontented with this tradeoff, we try something different:
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(def ^:dynamic *turbo-mode?* true) 

 

(defmacro slowly [& body] 

  (̀binding [*turbo-mode?* false] 

     ~@body)) 

 

(defn a [x] 

  (b x)) 

   

(defn b [x] 

  (c x)) 

   

(defn c [x] 

  (library/compute x *turbo-mode?*))

This seems even better. Now we only need to wrap some 
parts of our codebase in slowly and otherwise leave things 
as they are. Future changes to our code aren’t affected either.

After this change, though, things seem a bit flaky. A lengthy 
and frustrating investigation reveals that this expression is 
the culprit:

Here we map a over a sequence and then make sure it isn’t 
empty. Every time values has more than 32 elements, 
though, something seems to go wrong. The issue is that our 
slowly block returns a lazy sequence, which can be eval-

(slowly 

  (let [values’ (map a values)] 

    (if (empty? values’) 

      (throw  

        (IllegalArgumentException.  

          “empty input”)) 

      values’)))
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(slowly 

  (let [values’ (map a values)] 

    (if (empty? values’) 

      (throw  

        (IllegalArgumentException.  

          “empty input”)) 

      values’)))

In this expression, we do an empty? check on the input and 
return a completely unrealized sequence. This means that a 
is always evaluated outside the slowly block, which proba-
bly would have been caught by our tests.

Unfortunately, in the first expression we do an empty? 
check on the result, which realizes the first element. Be-
cause values happens to be a chunked-seq, realizing the 
first element also realizes the next 31 elements. These el-
ements are evaluated within the slowly scope, but any el-
ements which come afterwards aren’t. Since our tests use 
small collections, we only see this failure in production.

Laziness relies on referential transparency, which formal-
ly means that an expression and its result are interchange-
able. We can replace every instance of (+ 1 1) with 2, or 
vice versa, without changing the semantics of our code. Of 
course, there are situations where this isn’t true:

(let [+ (fn [a b] 
          (println "I'm adding" a "and" b) 
          (+ a b))] 
  (+ 1 1)) 
   
(let [+ (fn [a b] 
          (println "I'm adding" a "and" b) 
          (+ a b))] 

  2)

(slowly 

  (if (empty? values) 

    (throw  

      (IllegalArgumentException.  

        “empty input”)) 

    (map a values)))

uated outside of the binding form. This would have been 
obvious had the expression looked a little different:
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Side effects mean that we can’t just focus on what an expres-
sion returns, we also have to think about how it produces 
that value. They make the expression referentially opaque. 
Referential transparency also requires an expression to al-
ways return the same value, no matter where it’s evaluated. 
Dynamic scope breaks this invariant:

(def ^:dynamic *n* 1) 

(defn add-n [x] 

  (+ x *n*))

We can’t safely replace (add-n 1) with 2, because in a dif-
ferent context it might return something else. Any use of dy-
namic vars and binding suffers from this problem.

Laziness relies on referential transparency, and binding 
breaks it. More generally, almost any higher-order function 
assumes referential transparency. When we pass a function 
as a parameter, how and when it’s invoked is almost always 
an implementation detail.

An experienced programmer can, with care, understand 
and work within these details. They can avoid laziness or 
be sure to always realize lazy sequences within the prop-
er scope. Clojure also provides mechanisms like bound-fn, 
which captures the dynamic scope where the function is de-
fined and applies it when it is invoked. But these are easy to 
forget, and forgetting can lead to subtle bugs.

Consider a database client library which provides a with-
db macro. In the best case, lazy evaluation might cause us 
to make a call to the database where *db* is undefined. But 
chunked-seqs might hide the issue until our code has been 
running for months and our dataset has had time to grow. 
Worse yet, our lazy calls might be invoked not in an undefined 
context but within the scope of a different with-db macro, giv-
ing us a chimeric sequence of values without any complaint.

This is why, in our original example, the slowly macro is a 
poor design choice. An experienced reader might infer that 
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it uses binding, but they can, and will, forget. A less expe-
rienced reader might miss it entirely. Only the writer, at the 
time of writing, can safely rely on dynamic scope.

With a small change, all these problems disappear:

(def ^:dynamic *turbo-mode?* true) 

 

(defn a  

  ([x] 

    (b x)) 

  ([x turbo-mode?] 

    (binding [*turbo-mode?* turbo-mode?] 

      (b x)))) 

   

(defn b [x] 

  (c x)) 

   

(defn c [x] 

  (library/compute x *turbo-mode?*))

Now the result of a depends only on its parameters. It uses 
binding, but that’s safe because we know that c won’t be 
invoked lazily. Our slowly macro could be misused by any-
one invoking a, while our internal binding form can only be 
misused by someone changing the implementations of b or c.

Dynamic scope allows us to connect pieces of code without 
modifying everything in between. It can be a powerful tool 
for simplifying the internals of a codebase. It can also be a 
useful way to make complex code testable: a binding form 
at the top-level of a test, and a dynamic var with a default 
value only overriden in the scope of that test, suffers from 
none of the issues discussed above. However, any dynamic 
var invites re-binding; it may be safer to use with-redefs 
instead.
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If you have mutable state, use an atom
Clojure’s ref and atom constructs solve the same problem 
in different ways. Let’s consider the implausible example of 
a bank which stores its account balances in memory, in a 
single process. We want to implement a transfer! func-
tion which accepts mutable data representing all balances, 
transfers money between accounts a and b, and returns a 
map with the updated balances for those accounts.

To solve this with refs, we use an account—>balance map 
whose values are individual refs containing each account’s 
balance:

(defn transfer! [account->balance a b amount] 

  (dosync 

    {a (-> account->balance 

         (get a) 

         (alter - amount)) 

     b (-> account->balance 

         (get b) 

         (alter + amount))}))

To solve this with atoms, we use an account—>balance 
atom which contains an immutable map from account iden-
tifiers to balances:

(defn transfer! [account->balance a b amount] 

  (-> account->balance 

    (swap!  

      #(-> % 

         (update a - amount) 

         (update b + amount))) 

    (select-keys [a b]))
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Clojure’s software transactional memory (STM) implemen-
tation allows us to update separate mutable values atomi-
cally. However, we can accomplish the same result by put-
ting those separate values into a single data structure and 
wrapping them in an atom. The difference between these 
approaches is the expected throughput.

The swap! function is implemented using a compare-and-
set (CAS) primitive:12

(defn swap! [atom f & args] 

  (loop [] 

    (let [x  @atom 

          x' (apply f x args)] 

      (if (compare-and-set! atom x x') 

        x' 

        (recur)))))

The compare-and-set! operation allows us to update the 
atom only if its value hasn’t changed since we dereferenced 
it. If it has changed, we get the latest value and try again. If 
there are concurrent transfers between any accounts in the 
atom-based transfer! implementation, only one will suc-
ceed and all the others will have to retry.

STM uses a similar approach: update values within a trans-
action, and retry if someone else also did an update during 
our transaction. However, we only retry if our specific ref-
erences were touched. In the STM-based transfer! im-
plementation, if there are concurrent transfers between 
accounts, we will only retry if the same account is updated 
multiple times.

The utilization of a state container is a measure of how often 
it is in the process of being updated. In general, we expect to 
see retries increase dramatically whenever the utilization 

12. 
The actual 
implementation 
is written in Java, 
but this is equivalent.
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is greater than 60%.13 Since the atom-based implementa-
tion has only one container, we will approach that threshold 
more quickly.

But even if the atom has lower throughput, it’s almost cer-
tainly enough. Inside our swap! call, we’re just calling  
assoc twice, which even on a very slow machine will take 
less than a microsecond. Hitting the 60% utilization thresh-
old, then, would require more than 600,000 transfers per 
second. If each transfer is triggered by an external request, 
getting anywhere near this threshold will require expensive 
hardware, a fanatical devotion to efficiency, or both.

So while Clojure’s STM offers better throughput in extreme 
scenarios, it rarely offers a practical improvement. Atoms 
are simpler and introduce less overhead. In typical situa-
tions with little or no contention, atoms are faster.

Furthermore, STM can be difficult to use correctly. Much 
like dynamic scope, transactions break referential trans-
parency. Lazy realization of alter, commute, or ref-set 
could happen in the wrong transaction, leading to subtle 
errors. The commute function invites other mistakes; in our 
original example, we might realize that addition and sub-
traction are commutative and make this change:

(defn transfer! [account->balance a b amount] 

  (dosync 

    {a (-> account->balance 

         (get a) 

         (commute - amount)) 

     b (-> account->balance 

         (get b) 

         (commute + amount))}))

Since concurrent calls to commute don’t cause retries, this 
gives us optimal throughput. However, the return value is 
no longer valid; the value returned by commute may dif-

13. 
This is simplistic,  
but still a very useful 
rule of thumb.  
It treats the state 
container as an 
M/D/1 queue, which 
has an exponentially 
distributed interval 
between each update, 
and a deterministic 
cost for each update. 
Neither of these will 
ever be exactly true, 
but they’re true enough 
in most cases. In such 
a system, overhead 
is proportional to the 
square of the service 
time; halving the time 
for each update will 
quarter the number 
of retries.
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fer from the one committed at the end of the transaction. 
This inconsistency won’t be visible in tests, or even in low 
throughput production systems, making it all the more dan-
gerous.

More broadly, transactions make it difficult and expensive 
to get a consistent snapshot of our state. In the atom-based 
implementation, if we want a snapshot of all balances we 
can simply dereference account—>balance. With STM, it’s 
a bit more complicated. We can’t, for instance, just do this:

(defn balance-snapshot [account->balance] 

  (->> account->balance 

    vals 

    (map deref) 

    (zipmap (keys account->balance))))

Since a transaction can occur midway through, the values 
returned will not be consistent. To fix this, we need to make 
two changes:

(defn balance-snapshot [account->balance] 

  (dosync 

    (->> account->balance 

      vals 

      (map ensure) 

      (zipmap (keys account->balance)))))

First, we need to wrap our reads in their own transaction. 
Second, since using deref inside a transaction does not 
guarantee the values won’t change later in the transaction, 
we also need to change deref to ensure to make sure our 
values are completely consistent. Unfortunately, this means 
that transfers between any accounts may cause our snap-
shot function to retry. Likewise, taking a snapshot may 
cause transfers to retry.
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When Clojure was first announced, much of the focus was 
on its state primitives, and specifically its STM implemen-
tation. Years later, it seems clear that the real value derives 
from its immutable data structures and that atoms solve 
most problems involving state. Agents, which avoid retries 
by introducing an unbounded queue, are best avoided. STM 
is useful, but only in a narrow set of cases involving write-
heavy workloads that can’t be offloaded to a database.

If you have mutable state, make sure it belongs inside your 
process. If it does, try to represent it as a single atom. If that 
causes performance issues, try spreading the work across 
more processes. If that isn’t possible, see if the atom can be 
split into smaller atoms that don’t require shared consisten-
cy. Finally, if that doesn’t help, you should start looking into 
Clojure’s STM primitives.
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An explicit do block implies side effects
Any time we ignore the value returned by an expression, a 
side effect is occurring. Any function which returns nil ex-
ists solely to perform a side effect. Understanding these side 
effects is a crucial part of understanding a codebase. A do 
block tells the reader that something important is happening.

Many forms in Clojure, however, contain an implicit do block. 
These include the special forms fn, let, and loop, and 
macros such as when. Such forms rarely contain side effects 
and do not invite the reader to look closely. If there is a side 
effect, we must take extra care to get the reader’s attention.

One possible approach is to add a redundant do block:

(let [moon (choose-moon)] 

  (do 

    (fire-rocket! moon) 

    (await-landing moon)))

It’s often simpler, however, to draw attention through the 
use of negative space:

(let [moon (choose-moon)] 

 

  (fire-rocket! moon) 

   

  (await-landing moon))

Specifically within let bindings, we can call out inline side 
effects by assigning the return value to _:

(let [moon (choose-moon) 

      _    (fire-rocket! moon)] 

  (await-landing moon))

Any approach is fine, so long as it is used consistently 
throughout the codebase.
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Use the narrowest possible data accessor
Clojure’s data structures have many guises. A vector can be 
treated as a map of its indices onto its elements:

> (get [0 1] 1) 

1 

 

> (contains? [0 1] 2) 

false

A map can be treated as a sequence of “entry” objects, which 
themselves can be treated as vectors:

> (map key {:a 1, :b 2}) 

(:a :b) 

 

> (map first {:a 1, :b 2}) 

(:a :b)

Similarly, Java List and array objects can be coerced into 
a lazy-seq, and every sequence operator in clojure.core 
does this implicitly.

> (->> [1 2 3]  

    int-array  

    (map inc)) 

(2 3 4)

This allows us to focus on the ways these data structures are 
similar, rather than their subtle differences. However, it also 
means that there are many paths to the same data transfor-
mation. If we want a sequence of the keys in a map, we can 
use the approaches shown above or simply call (keys m). 
Often a single codebase will use all three approaches, even 
if there’s a single author.
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While these are functionally equivalent, they are very dif-
ferent for the reader. Seeing (map first x) only tells us 
that x is a sequence of sequences, while (map key x) im-
plies that x is a sequence of entries; only (keys x) tells us, 
definitively, that x is a map.

Less ambiguous names can help, but are not enough on 
their own. Naming a map m or a—>b clarifies our intent, but 
this clarity must be mirrored within the code itself.

Clojure makes it possible to ignore the differences between 
data structures, but that doesn’t mean we should. Often, 
these differences matter. By using generic accessors, such 
as invoking a collection as a function rather than using get, 
nth, or contains?, we strongly imply that they don’t matter. 
The subtext of our code should always reflect our intent.
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Use letfn for mutual recursion
The let form is familiar to any Clojure reader; the name 
goes on the left and the evaluated form on the right. For mul-
tiple bindings, it often helps legibility to align our columns:

(let [two        (+ 1 1) 
      twenty-two (+ 11 11)] 

  ...)

This is true for let, loop, and any other macros that pro-
vide lexical bindings. The only outlier, perhaps in the entire 
Clojure ecosystem, is letfn:

(letfn [(cube [x] (* x x x))] 

  ...)

This encloses the left and right sides of the binding in a sin-
gle form, which is unusual enough that it will cause even ex-
perienced readers to stumble. The above form is equivalent 
to this:

(let [cube (fn cube [x] (* x x x))] 

  ...)

Note that cube appears twice in the expanded form: first 
as the lexical name and second as the name that is shown 
in stack traces. The fact that letfn avoids this duplication 
doesn’t make up for its structural irregularity. The only real 
value of letfn is that it allows out-of-order references be-
tween functions:

(letfn [(a [x] (b x)) 
        (b [x] (a x))] 

  ...)

These functions will endlessly recurse without doing any-
thing useful, but they will compile. Use of letfn should be 
confined to cases of mutual recursion and avoided every-
where else.
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Java interop should be obvious
Clojure’s data types are best understood via their innards. 
When reading unfamiliar code, our focus is on how the four 
fundamental datatypes (maps, sets, vectors, and seqs) have 
been nested within each other. This tells us not only what 
the data is but how to interact with it.

A Java object, on the other hand, is best understood via its 
name. Even if we know what it contains, we can only know 
how to interact with it by reading the documentation. This 
requires a fundamentally different mindset from the reader.

Fortunately, Java interop looks noticeably different from 
normal Clojure code. Unfortunately, this is easily subverted:

(.. (java.util.HashMap.) 

  (put :ganymede :jupiter) 

  (put :phobos :mars) 

  (put :oberon :uranus))

Clojure’s .. macro reduces the amount of punctuation in 
our code, but it turns Java interop into something that is 
recognized through a form’s context rather than the form 
itself. A reader could easily mistake put for a Clojure func-
tion, rather than a Java method. This macro and others like 
it come at too high a cost. Unusual code should be allowed 
to look unusual.
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Use for to create cartesian products
In Clojure, transformations are best done piecemeal:

(->> s 

  (remove nil?) 

  (map :user) 

  (group-by :department))

In this expression, steps can easily be added, removed, and 
reordered. If we’re especially concerned with performance, 
we can use transducers, but this only works for the subset of 
supported functions:

(->> s 

  (eduction  

    (comp 

      (remove nil?) 

      (map :user))) 

  (group-by :department))

Since group-by isn’t implemented as a transducer, we have to 
nest the surrounding operations in (eduction (comp ...)). 
This obscures our intent, making it harder to think of each 
transformation as a separable piece of computation.14

Similarly, the for macro provides a syntax for simple list 
comprehensions:

(group-by :department 

  (for [record s 

        :when  record 

        :let   [user (:user record)]] 

    user))

14. 
The real value  
of transducers is not 
performance,  
but rather that  
non-standard data 
representations  
like core.async  
channels can use  
clojure.core 
directly rather than 
having to define their 
own map, filter, 
and so on.
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This syntax encompasses simple operations like map and 
filter but not more complex operations like group-by. 
This means our declarative list comprehension will often sit 
awkwardly within a larger chain of transformations.

However, for does have a unique ability:

(for [a [1 2 3] 

      b [:a :b :c]] 

  [a b])

This will generate every possible combination of a and b, 
also known as their cartesian product. Whenever we re-
quire such a thing, we should use for, unadorned by any 
:let, :when, or :while clauses.

The declarative nature of for can also be useful when defin-
ing data literals:

[:html 

  [:ul 

    (for [item todo-items] 

      [:li item])]]

Here we define an HTML document containing a to-do list. 
The for macro functions like a template, the round brackets 
clearly differentiated from the square brackets of the sur-
rounding data literals. Here again, however, we should avoid 
special for clauses, as they would only serve to confuse be-
tween data literals and executable expressions.
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nil should be the absence of only a few values
The nil value is one of the trickiest parts of Clojure, be-
cause it represents an absence. The absence of what, exactly, 
depends on the context. For conj, cons, and nth, it is the 
absence of a seq:

> (conj nil :callisto) 

(:callisto) 

 

> (cons nil :callisto) 

(:callisto) 

 

> (nth nil 42) 

nil

For count, it is an empty collection:

> (count nil) 

0

For assoc and get, it is the absence of a map:

> (assoc nil :callisto 1610) 

{:callisto 1610} 

 

> (get nil :callisto :unknown-year-of-discovery) 

:unknown-year-of-discovery

For if, it is the absence of truth:

> (if nil 

    :true 

    :false) 

:false
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If we don’t define a default value, nil is the absence of what-
ever we’re looking up:

> (get {} :callisto) 

nil

This is important to remember, because Clojure treats any-
thing that isn’t a map as an empty map:

> (get 1 :callisto) 

nil 
 

> (get (Object.) :callisto) 

nil

As a result, we cannot consider a function that returns nil 
in isolation; we have to look at the downstream functions to 
make sure they interpret our nil correctly. Consider a map 
of keywords onto vectors of numbers:

(def key->numbers  

  {:a [1 2 3] 

   :b [4 5 6]})

If we look up a nonexistent keyword, we’ll get a nil repre-
senting the absence of a vector. Unfortunately, none of Clo-
jure’s standard functions interpret nil that way.

> (-> key->numbers  
    :a  
    (conj 8 9 10)) 
[1 2 3 8 9 10] 
 
> (-> key->numbers  
    :c  
    (conj 8 9 10)) 

(10 9 8)
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To fix this, we must be explicit about our absent values:

> (-> key->numbers  

    (:c [])  

    (conj 8 9 10)) 

[8 9 10]

Composing nil-friendly functions can create an explosion 
of ambiguity:

(-> solar-system :jupiter :callisto :mass)

Here, nil may represent the absence of the :mass, :cal-
listo, or :jupiter keys, or the absence of the entire so-
lar-system. Sometimes, the differences between these 
explanations may not matter; one way or another, we don’t 
know the moon’s mass. Explicitly representing each case in 
our code is needlessly verbose:

(if solar-system 

  (if-some [jupiter (:jupiter solar-system)] 

    (if-some [callisto (:callisto jupiter)] 

      (if-some [mass (:mass callisto)] 

        mass 

        nil) 

      nil) 

    nil) 

  nil)

If we simply pass along an ambiguous nil, however, the am-
biguity will grow, and the first peson bit by a NullPoint-
erException will have to walk backward through the code, 
testing each hypothesis in turn. Ambiguity makes our code 
more concise, but unbounded ambiguity makes it impossi-
ble to reason about. To protect ourselves, we must interpret 
nil at regular intervals throughout our code.
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This conflates the meanings of nil within our expression 
but separates it from the meanings of nil everywhere else. 
Treating mass as a number-or-keyword datatype is inele-
gant, but so is number-or-nil; the keyword, at least, is harder 
to ignore or misinterpret.

This means that effective Clojure should avoid this all-too-
common idiom:

(defn some-function [x & args] 

  (when x 

    ...))

Wrapping a function in a when clause simply passes the 
buck, making nil someone else’s problem. If nil can be 
coerced to an empty collection, we should do that. If not, we 
should throw an error. Anything else sows needless confu-
sion.

(-> solar-system :jupiter :callisto (:mass :mass-not-found))
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Indirection
Indirection provides separation between what and how. It 
exists wherever “how does this work?” is best answered, “it 
depends.” This separation is useful when the underlying 
implementation is complicated or subject to change. It gives 
us the freedom to change incidental details in our software 
while maintaining its essential qualities. It also defines the 
layers of our software; indirection invites the reader to stop 
and explore no further. It tells us when we’re allowed to be 
incurious.

There are two fundamental tools for indirection: refer-
ences and conditionals. A reference is a value that points 
to another value, its referent. Getting the referent is called 
dereferencing. A name is a lexical reference that is derefer-
enced at compile time. A pointer is a memory reference that 
is dereferenced at runtime.

In both cases, it is possible for a reference to point to noth-
ing. In the case of names, this will cause a compile error. In 
the case of a pointer, we represent “nothing” with the nil 
value, which has been known to cause runtime errors.

Any function that takes non-primitive values uses referenc-
es. The behavior of filter, for instance, depends on refer-
ences to both a predicate function and a sequence. These 
values are implicitly dereferenced, unlike Clojure’s concur-
rency primitives, which require explicit dereferencing.

A conditional is any expression that uses an if or case form, 
making its behavior dependent on the input values. This is 
necessary when only a subset of possible values is valid or, 
more generally, when different subsets of possible values 
have different semantics.

We can see both of these in the semantics of Clojure’s nth 
function, which is partially reproduced here:
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(defn nth [x idx] 

  (cond 

    (string? x)        (.charAt ^String x idx) 

    (instance? List x) (.get ^List x idx) 

    ...))

In this function, the value of idx is an arbitrary integer val-
ue, but only values within [0, size) are valid. The value of 
x can be any reference type, but only a fixed set of collection 
types is valid. For each of these collection types, the lookup 
method is different. Conditionals can be used to segment 
behavior for a given type, unify behavior across many types, 
or both.

A reference conveys values, and a conditional decides based 
upon values. These are complementary primitives and are 
present in every modern language. Through their composi-
tion, we can create software of arbitrary complexity.

The importance of these primitives is reflected in modern 
computer hardware. Memory indirection requires costly 
lookups in main memory, and so we created a hierarchy of 
caches, each smaller and faster than the one above. Con-
ditional jump operations prevent the pipelined execution 
of instructions, and so we introduced branch prediction. 
Enormous effort has been poured into these optimizations 
because we can’t live without indirection. All we can try to 
do is minimize its cost.

These primitives differ in how we change their behavior. A 
reference is open; we can change the behavior of the deref-
erencing code by conveying different values. Conversely, a 
conditional is closed; we can only change its decision pro-
cess by changing the underlying code.

It’s tempting to say that we can create an “open” conditional 
by putting all the predicates and clauses into a data struc-
ture. Using this approach, we can modify the decision pro-
cess simply by changing the data. Since any nontrivial data 
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structure uses both references and conditionals, we might 
expect it to inherit the best qualities of each.

However, one of the fundamental properties of conditional 
code is that it is ordered. The behaviors of these two cond 
expressions are very different:

(cond 

  (<= 0 n 10) ... 

  (<= 5 n 15) ...) 

   

(cond 

  (<= 5 n 15) ... 

  (<= 0 n 10) ...)

In the first expression, we describe one behavior for inputs 
in [0, 10] and another behavior for inputs in [11, 15]. In 
the second expression we describe one behavior for inputs 
in [5, 15] and another behavior for inputs in [0, 4]. If our 
predicates aren’t disjoint, order matters.

The predicates in our hypothetical data structure may over-
lap. That means the order in which we evaluate them mat-
ters, and that order is described by the code that populates 
our data structure. Our decision process is still closed; all 
we’ve done is change where the specification lives.

For a decision-making mechanism to be open, it must be 
unordered. Typically this is implemented using a data 
structure with a distinct set of keys, which we will refer to 
as a table.

For a table to be useful, it must avoid conflicts. One way to 
accomplish this is to keep the table private so it reflects only 
our vision of how keys map onto behavior. Alternatively, we 
can extend the table using only private keys so no one else 
can shadow our behavior.
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Failure to do either will land us in a situation similar to Ruby, 
where libraries sometimes make conflicting monkey-patches to 
fundamental datatypes, each trying to satisfy their own narrow 
use case. The errors that arise from this are often subtle and dif-
ficult to track down.

Conditionals solve conflicts by making an explicit, fixed decision. 
Where conflicts are possible, we use conditionals because they are 
closed.
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Method Dispatch
Method dispatch allows us to associate a single method with 
one of many implementations. If the association occurs at 
compile time, it is called static dispatch. If the association 
occurs at runtime, it is called dynamic dispatch.

All of Clojure’s dispatch mechanisms – interfaces, protocols, 
and multimethods – are implemented using tables. All of 
them are open, but to different degrees. In general, their ef-
ficiency is inversely proportional to their openness.

Interfaces dispatch on the class of the object. Any class may 
implement an interface, but the implementation must be 
defined within that class. This means that conflicts are im-
possible; the association, if any, between an interface and 
a class can only be decided by the author of the class. This 
also means that static dispatch is possible, as long as we in-
voke using the concrete type rather than the interface.

Protocols also dispatch on the class of the object, but anyone 
may define a relationship between a protocol and a class. 
This means that static dispatch is impossible, and under-
standing that relationship may require reading the entire 
codebase. It also means that if both a protocol and class are 
publicly visible, we risk defining conflicting extensions. In 
practice, when extending a protocol over a class, either the 
class or protocol should be a hidden implementation detail. 
This avoids conflicts and means we only need to examine 
the code near the hidden class or protocol to understand the 
relationship.

Multimethods dispatch on a key derived from all arguments 
to the function. This is much more flexible than either in-
terfaces or protocols, at the cost of some performance. As 
with protocols, we must take care to avoid defining relation-
ships between multimethods and keys that are both public-
ly visible. For instance, Clojure’s print-method allows us to 
change the behavior of prn for any type. If we were to do this 
for a common class, like clojure.lang.PersistentVec-
tor, it could be disastrous.
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When using Clojure’s hierarchy mechanism, it’s possible to 
define multimethod keys with overlapping scopes. This can 
be resolved using prefer-method, but this is a closed deci-
sion process that can be defined and overridden anywhere 
in the codebase. The complexity and risks introduced by hi-
erarchies are rarely worthwhile.

We’re forced to worry about collisions when using proto-
cols and multimethods because both rely on shared global 
state. This allows us to incrementally define dispatch be-
havior and saves us from having to thread the dispatch table 
through all of our function calls. This is usually a worthwhile 
tradeoff, but when it’s not, we’re forced to try something else.

In the most trivial case, we can define a class—>method—>impl 
data structure and define an invocation helper:

Then we can define functions that expect the dispatch table 
as a parameter and use our invoke macro rather than stan-
dard invocation.15 This is ungainly but much more flexible; 
we can freely change dispatch behavior within a local scope 
without affecting the rest of our code. We can even create 
higher-order abstractions to describe these local changes. 
This approach is rarely necessary, but we should never for-
get that it is within reach.

(defmacro invoke  

  [class->method->impl x method & args] 

  (̀(get-in ~class->method->impl [(class ~x) ~method]) 

    ~x 

    ~@args))

15. 
We can’t avoid  
the explicit parameter 
by using dynamic 
scope because 
it wouldn’t be 
compatible with lazy 
evaluation.
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What is an Abstraction?
Indirection is a mechanism for creating abstractions, which 
is a word we’ve carefully avoided until now. To explain why, 
we’ll look at two concepts that are fundamental parts of Clo-
jure’s lineage: the cons cell and Church numerals.

In its most common usage, the cons cell represents a list. It 
contains two values, the first representing an element and the 
second representing a reference to the next cell. By creating 
a new cell which references a list, we effectively prepend to it.

A Church numeral represents the natural numbers through 
function composition. The number n is a function which takes 
a value and a function f, and applies f to the value n times. By 
composing a “successor” function with an existing numeral, 
we effectively increment it.

These concepts have a structural similarity: they accumu-
late through creating references to a previous value. However, 
while the cons cell has seen widespread use in software, the 
Church numeral has only been used in mathematical proofs. 
This is because the cons cell is a practical model for repre-
senting lists in memory, while Church numerals are a deeply 
impractical model when compared to a binary representation.

Of course, this isn’t a fair criticism of Church numerals; they 
were never meant to be an actual method for performing 
arithmetic. They were designed to be a useful tool for mathe-
matical proofs, and in this they were successful. They are, in 
a sense, timeless.

But the cons cell is not timeless; since its invention in the late 
1950s, computers have changed. Notably, processor speed 
has improved more than memory latency, and so the relative 
cost of following a reference has grown over time. For this rea-
son, Clojure favors data structures which represent lists using 
32-element blocks, such as vectors and chunked-seqs.16

Both the cons cell and the Church numeral would commonly 
be called abstractions. They both fit our informal definition: 
they are conceptual tools built using indirection. However, 

16. 
The only meaningful 
exception to this rule is 
Clojure’s syntax trees, 
which are small and 
rarely processed at 
runtime.
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one is meant to run on a physical machine, and the other is 
not. One is judged with respect to a changing context, and the 
other is not.

A common formal definition of abstraction comes from C.A.R. 
Hoare’s paper Proof of Correctness of Data Representation, pub-
lished in 1972. Hoare distinguishes between a data struc-
ture’s concrete representation, which is its internal model, 
and its abstract representation, which is the interface it ex-
poses. In his terminology, mapping the concrete representa-
tion onto its abstract representation is done via an abstraction 
function.

Consider a data structure that represents an integer set and 
provides add and contains? methods. In this case, we could 
implement it as a simple list of integers, where contains? 
scans the list to see if it can find the number and add appends 
it to the end of the list. This is a bit wasteful since the list may 
contain duplicate numbers, but it works.

This approach is less acceptable if we need to implement a 
remove method. Ideally, we’d like to search for the first in-
stance of a number and, if it’s found, remove it. However, in 
the above approach we’ll need to scan the entire list every 
time because there might be duplicates. To simplify, we de-
cide that add will only append the number if it’s not already 
in our list.

Now our model is not just a list of integers; it’s a list of unique 
integers. This is trivially true for an initial empty list and will 
remain true after each invocation of add or remove. Hoare 
calls this an invariant relation on the concrete representation. 
To determine if a method is correct, we only need to consider 
the model and its invariants. As long as add enforces the in-
variant, its implementation doesn’t affect remove.

We are also able to change the model without affecting the ab-
stract behavior of the data structure. If we decide that our list 
should be sorted, add and remove will have to be changed to 
enforce this new invariant, but the semantics of our interface 
will remain the same.
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Hoare’s paper, as the title suggests, is concerned with con-
structing proofs. As we saw with the Church numeral, proofs 
lack context; they are only concerned with being self-consis-
tent. Likewise, Hoare’s terminology describes the abstrac-
tion’s interface and its internals, but it doesn’t acknowledge 
that the abstraction exists within an environment.

This is not a small omission. Consider that the mechanical 
clock existed for centuries before we devised one which could 
keep accurate time aboard a ship. This wasn’t for lack of try-
ing; keeping accurate time allowed determining the ship’s 
longitude, and many lives and fortunes were lost to poor navi-
gation. The ocean happens to be a very difficult environment: 
it constantly moves, temperatures fluctuate wildly, and grav-
ity is 0.5% stronger at the poles than the equator.

An early mechanical clock was at the mercy of its environ-
ment. It had to sit on a flat surface and couldn’t be rocked, 
shaken, or dropped. It had to be regularly wound. The tem-
perature couldn’t change too much or too quickly. These were 
not invariants, because the clock couldn’t enforce them. They 
were assumptions.

Hoare’s abstraction function, like the Church numeral, is a 
mathematical abstraction. It describes a model which has 
provable qualities and is often described as “correct,” which 
means it is self-consistent. By omission, it deems the context 
unimportant.

In software, we don’t have the luxury of ignoring context. We 
need our models to be self-consistent, but we also need them 
to be useful within our given environment. There are count-
less resources for creating self-consistent abstractions, but 
few for creating useful abstractions. This is in part because 
self-consistency is an objective property, while utility is 
hopelessly subjective.17

Self-consistency is necessary, but not sufficient. When eval-
uating software, we cannot ignore the broader context. We 
must take advantage of every available perspective. We must 
be dissatisfied with easy answers. We must be curious.

17. 
There is an 
unfortunate tendency 
to treat proof that 
software is “correct” 
as proof that it is 
useful. The term  
“self-consistent”  
is preferable because 
it clearly suggests  
that we are ignoring 
a broader context.
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Most software abstractions take the form of a module, which 
consists of a model, an interface, and an environment.

The model is a collection of data and functions. The inter-
face is the means by which the model and environment in-
teract. The environment is everything else: other software 
components, the users, and the world they exist in.

Models reflect specific facets of their environment. They 
narrow our attention, giving us the ability to reason about 
something that is endlessly complex and to change it in pre-
dictable ways. Everything the model does not reflect rep-
resents an assumption that these missing facets are either 
fixed or irrelevant. If a model can represent invalid states, it 
must enforce invariants that preclude those states.

In the context of our mechanical clock, the model is the in-
ner clockwork, which enforces an invariant relationship be-
tween the passage of time and the turning of its gears. The 
interface is the clock’s hands and dial, as well as the wind-
ing mechanism. The clock assumes that it will be regular-
ly wound and that the clockwork won’t be subjected to any 
forces that prevent it from doing its job. If those assump-
tions are false in our particular context, then the clock is no 
longer a useful tool for telling time.

A Model for Modules

Environment

Interface

Model
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Models 
When we discuss models, we often turn to physics. The tran-
sitions from Ptolemy’s epicycles to Kepler’s ellipses, from 
Aristotelian to Newtonian mechanics, and from the hodge-
podge of laws about electricity and magnetism to Maxwell’s 
equations, are shining examples of how better models can 
be transformative. They sweep away something crumbling 
under the weight of exceptions and bolted-on fixes, replac-
ing it with something simple and clean.

Physics, like all natural sciences, aspires to reason deduc-
tively about the world. Deduction maps the environment 
into the model and then uses the model to infer new facts 
about the environment. In physics, we observe the world in 
order to predict what comes next.

In formal deductive reasoning, our conclusions are neces-
sary; if they’re wrong, it’s only because our initial assump-
tions were wrong. By this measure, physics falls short. New-
ton’s mechanics can’t predict the orbit of Mercury, and it’s 
not because we’re using the wrong gravitational constant. 
The mechanics themselves are flawed.

Physics is not, in the strictest sense, deductive. It may never 
be. But physicists will never stop trying.18

Many early computer scientists were trained as physicists, 
and it shows. When building systems that interacted with the 
world, they leaned heavily on this deductive approach. The 

“General Problem Solver” was a software agent created in 1959 
that tried to solve every problem via “means-end analysis.” It 
would observe the current state, compare it to the desired out-
come, and search for a path between the two by simulating 
intermediate actions. Having found a path, it would then act.

The General Problem Solver was not successful, but similar 
approaches were tried on successively more powerful ma-
chines until the late 1980s, when the AI Winter more or less 
snuffed out that line of research. Since then, practical use 
of software has exploded, and deductive models have given 
way to inductive ones.

18. 
Many flawed theories, 
like Newton’s 
mechanics, can still  
be useful in an 
engineering context. 
However, this is just  
a pleasant side effect  
of physics research,  
not its purpose.
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Inductive reasoning is, in effect, reasoning by analogy. If 
two objects occupy the same point within our model, we can 
observe one to draw conclusions about the other. If rocks 
and phones look the same within our model, and a rock falls 
to the ground when it’s dropped, we can reasonably assume 
our phone will too.

The conclusions we draw from inductive reasoning are con-
tingent; they’re allowed to be wrong. Inductive models are 
more resilient than their deductive counterparts. Consider 
a simplistic deductive approach to our dropped phone:

• Our phone is an object.

• All dropped objects fall.

• Therefore, if we drop our phone, it will fall.

This takes a narrow observation, applies rules, and yields a 
conclusion. The conclusion is reasonable unless we happen 
to be in an accelerating vehicle, in free-fall, or in any other 
situation where gravity is not the dominant force. To handle 
those cases, we’d need to increase the breadth of our obser-
vations and the complexity of our rules.

Contrast this with an inductive approach: our phone will do 
whatever a rock will do. This is both simpler and more ro-
bust, but it comes at a cost: we must continuously observe 
the behavior of our rock. We can never retreat into our own 
minds.

Empirically, this is a price worth paying; induction is used 
by every living organism. Consider how the world is seen by 
a tick.

A tick’s decision to try to latch onto a passing animal is based 
on the presence of heat and butyric acid, found in sweat. If 
there are sufficient quantities of both, it reflexively makes 
an attempt.

The tick’s model of its environment cannot guarantee a 
consistent outcome. For any given values of heat and sweat, 
there are scenarios that lead to success and scenarios that 
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lead to failure. Nevertheless, the tick survives; its simplistic 
model satisfices.19 It may not be optimal, but it works well 
enough in practice.

Where the Solver tried to predict, the tick only compares. The 
tick is not a brain in a jar; we can only understand it with-
in its environment. The same is true of every living organ-
ism, including humans. Our internal models may be more 
sophisticated than a tick’s, but they’re still far from deduc-
tive.20

Likewise, real-world software models don’t attempt to pre-
dict, only compare. A login process does not verify a per-
son’s identity; it only compares the username and password 
(or some hash thereof) to what’s stored within the model. 
Two people who know that username and password are 
equivalent within our model; they are effectively the same 
person. This is a reasonable assumption in some situations, 
and dangerous in others. In order to judge any model, we 
must first define its environment.

It’s easy to create a deductive model: simply reduce every-
thing to arithmetic or first-order logic. What’s difficult is to 
create a deductive model that is useful. Fred Brook’s famous 
observation that “nine women can’t make a baby in one 
month” is a refutation of a model that is simple, deductive, 
and wrong. Distrust any abstraction that touches the real 
world and touts its own logical simplicity.

This is not to say that deductive models are worthless; rules 
engines and Prolog-like mechanisms can be used to good 
effect in certain domains. However, these models do not be-
long at the periphery of our systems, and we must not mis-
take their self-consistency for more than it is.

The models of mathematics don’t acknowledge their envi-
ronment. We can use them to judge whether our software 
is self-consistent, but not whether it is useful. The models 
of physics are built atop deductive mechanisms, and aspire 
towards perfection. The models of software are built atop 
inductive analogies and aspire only to satisfice.

19. 
This term comes 
from Herbert Simon’s 
book Sciences of the 
Artificial, which  
is a seminal book  
on design. Curiously, 
Simon was also one 
of the creators of 
the General Problem 
Solver. When reading 
the book, and similar 
works from the dawn 
of computing, one 
must take care to 
separate the logical 
positivism that birthed 
the Solver from the 
pragmatism that led to 
satisfice being coined.

20. 
Philip Agre’s 
Computation and 
Human Experience 
provides a more 
detailed critique  
of the assumptions 
underlying the General 
Problem Solver and 
their prevalence in  
the AI community over 
the following decades.
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Invariants
Invariants are required when a model can represent inval-
id values. Typically, this term describes enforcement of the 
self-consistency of our models. In our earlier example, the 
integer set had to ensure that its array is always in sorted 
order or it wouldn’t work properly.

But there is a broader sense to this term, which concerns 
how the model relates to its environment. We only want our 
model to represent values that can be found in the environ-
ment. For instance, if we store a user’s email address as a 
bare string, countless possible values are not valid address-
es: they might be empty, lack an @ symbol, or contain the 
collected works of Shakespeare.

Adding regex validation narrows the possible values in our 
model, but only to strings that superficially resemble email 
addresses. To validate the address we have to reach outside 
our process, which makes things considerably harder. We 
can enforce restrictions on our own model, but we can’t en-
force a fixed relationship between our model and environ-
ment.

We can add a confirmation step to our user registration pro-
cess, where users are required to acknowledge receipt of a 
message before we accept their email address as valid. But 
even then, the email server may go out of service, the ac-
count might be stolen, or the user might forget their pass-
word. No one will tell us when the environment drifts away 
from our model.

At the risk of annoying our users, we can periodically reval-
idate our model by asking, “is this the best way to contact 
you?” This only mitigates the problem, but mitigation is the 
best we can hope for. We must understand how drift be-
tween our model and environment can affect us and make 
sure we avoid the worst of it.
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Assumptions
Everything a model omits represents an assumption about 
the environment: these unrepresented facets are either 
fixed or irrelevant. A mechanical clock may assume that it 
will sit on a flat surface, give or take a few degrees. All clocks 
assume, by omission, that the motion of Jupiter’s moons 
won’t affect them.

It’s easy to imagine a failure of the former assumption; the 
clock might be knocked over or placed on a crooked shelf. 
It’s difficult, however, to imagine how the latter assumption 
would ever fail. Practical models are small and therefore 
come with an enormous number of assumptions, most of 
which are completely sound.

The trick, then, is to know which assumptions are worth our 
attention. We care about assumptions that are invalid or are 
likely to become so. Judging whether a model is useful in a 
given environment requires understanding how that envi-
ronment can change.

We can reduce the burden of fragile assumptions by layer-
ing modules with complementary invariants and assump-
tions. For instance, our mechanical clock assumes a flat 
surface, and a gyroscopic platform provides a flat surface in 
all environments. If we put the clock atop that platform, the 
assumption is no longer our concern.

Broad assumptions mean smaller models, which means 
simpler code. If we keep modules with similar assumptions 
grouped together, we can wrap them in a single layer that 
enforces those assumptions. Abstractions that fail together 
should stay together.

In some cases this is easy: if a collection isn’t thread-safe, 
we can wrap all access to that collection in a mutex. Like-
wise, input validation can be performed once at the outer-
most layers of our software. However, almost all software 
assumes that memory allocations won’t fail, and the JVM 
won’t let us enforce that assumption.
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Conventions
If an assumption isn’t hidden away by an abstraction layer, 
it becomes our responsibility to enforce it. Our software’s 
assumption that it can always allocate memory is false un-
less we make the heap large enough. A mutable data struc-
ture’s assumption that it has a single owner is false unless 
we structure our code to ensure it.

These flawed assumptions at the edges of our software are 
what make abstractions “leaky.” Often, the flaw is that we 
expect too much of our users. The C++ language assumes 
that programmers can consistently free allocated memory 
once they’re done with it, which hasn’t proven true. We can 
hide away this flawed assumption by adding garbage collec-
tion to our runtime, but that comes at a cost some are not 
willing to pay. Instead, C++ relies on a convention known 
as “resource allocation is initialization” (RAII) that makes it 
much harder to write code that leaks memory. Likewise, the 
second chapter of this book describes conventions that help 
us satisfy the assumptions Clojure drops in our laps.

Even where conventions are required, grouping modules 
by assumption can be useful. It allows us to more easily re-
member what conventions are required where.

Conventions are fallible. We sometimes use them because 
an additional layer of abstraction is too expensive, either 
to build or to execute. More often, though, we use them be-
cause our assumptions are flawed, and we don’t know how 
to automatically enforce them. Conventions are a useful tool, 
but they’re not a solution. We should always aspire for some-
thing better.

Interfaces
The interface is the means by which the model and envi-
ronment interact. This encompasses the formal interfaces, 
such as those defined with defprotocol, but also any ef-
fects or shared state. Uses of stdout and stdin, log files, 
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shared atoms, and network requests are all ways that a 
model can change, or be changed by, its environment.

The interface describes the sense of a module; it encom-
passes what the model is and also what we expect it to be-
come. As a result, interfaces change much more slowly than 
models and almost always grow over time. It’s far easier to 
add a method than to take it away.

We should keep our interfaces, like our names, narrow. 
They should reflect the fundamental qualities of our model 
and hide away everything else.

Environments
The environment is everything that is not the model and 
interface. Our model does not attempt to define further 
boundaries. It does not draw distinctions between software 
and users, or users and the moons of Jupiter. The environ-
ment is just a large, homogenous “everything else.”

If we applied our model to itself, we’d have to conclude that 
it assumes these distinctions are irrelevant. This is clearly 
a bad assumption; for any given model, small facets of the 
environment are critically important, and the rest are not. 
To use this model to analyze whether a module is useful, we 
must draw a line around the things in the environment that 
are worth paying attention to. This must be done on a case-
by-case basis by someone with domain expertise.

That same underdefined quality, however, is what makes 
this model useful for inductive reasoning. Few modules 
care about the same environmental facets, but all modules 
have a model, interface, and environment. This is true for 
software, architecture, biology, urban planning, and a host 
of other fields.

Computer science has been grappling with the problem of 
abstraction for half a century. Other academic traditions 
have been grappling with it for millennia. This model allows 
us to map their insights into our domain.
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Consequences of our Model
Our goal is to write better modules. At the very least, this 
means we have to be able to judge whether a given module is 
useful. If a module isn’t useful, we have to decide what steps 
to take.

While our definition of “module” doesn’t directly address ei-
ther of these, it does lead to some obvious conclusions.

To abstract is to treat things which are different as equivalent
If a tree loses a leaf, we consider it the same tree. This is 
because our mental model of that tree does not enumer-
ate every leaf; the world may have changed, but our model 
remains the same. Our understanding of the tree remains 
valid. If we find a second tree that looks identical within our 
model, we can apply our understanding of that first tree to 
the second. By ignoring parts of the world, we can use our 
existing knowledge in novel situations. This is the essence 
of inductive reasoning.

In his short story Funes the Memorious, Jorge Luis Borges de-
scribes a man whose memory is so lossless that he can only 
recall the past by reliving it, moment by moment. Seeing a 
dog from two different angles, he cannot find any connec-
tion; they are both just collections of endless details, differ-
ent in every way. The narrator claims that Funes is not really 
thinking, only remembering:

To think is to forget a difference, to generalize, to abstract.
In the overly replete world of Funes there were nothing but 
details, almost contiguous details.

By including a facet in our model, we are saying a change 
to that facet invalidates our past understanding. If we’re 
selling tickets to sporting events, our database will focus on 
the details of the venue, but largely ignore the players them-
selves. If we’re trying to predict the outcome of a game, on 
the other hand, even a single player being injured will force 
us to reconsider everything; it has become a different team.
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Inductive reasoning is about deciding which differences we 
choose to acknowledge. If plausible changes to some facet 
will alter our model’s identity, we must include it. If not, we 
should spend our finite mental resources elsewhere.

Models reflect our perception of their environment
There is no objective measure of the importance of a given 
facet. Our choice to include one facet, and exclude another, 
reflects the subjective importance we ascribe to each. The 
model cannot help but reflect its environment; it has no oth-
er source of information.21 By curating what it can and can-
not reflect, however, we can distort the environment into 
something unrecognizable.

A module is useful only if its assumptions are sound
By ignoring, we assume. If our module constructs SQL state-
ments using bare strings from its environment, it ignores 
the possibility of malicious strings and thus implicitly as-
sumes they won’t occur. If it is wrapped in another mod-
ule which escapes or otherwise validates the strings, this 
assumption is enforced. If not, then we must hope that our 
users are, by convention, virtuous. For an internal tool, this 
might be a sound assumption, but in most cases it is not.

When judging our assumptions, we must consider not only 
what our environment is, but what it is likely to become. 
Most disagreements about software are, at their root, dis-
agreements about its present and future environments. 
When we say software is “over-engineered,” we mean that 
it has too few assumptions; the same effect could have been 
accomplished with less effort. This means we believe our 
present environment is narrower than the one assumed by 
the software and will remain so in the near future. Over-en-
gineering is not a property of our software, but of how we 
intend to use it.

21. 
This is only true if  
we carefully interpret 
each facet’s meaning.  
If we ask our users if 
they can fly, we cannot 
take their response at 
face value.  
We might call the 
field can-fly?, but 
it really only reflects 
their willingness to 
claim they can.
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To judge whether our module is useful, we must first de-
scribe the environment as it is and as it will be. Every con-
versation about software can be made more productive by 
describing, up front, our subjective understanding of its en-
vironment.

To know a module’s assumptions, we must know its model
Our model and assumptions are duals of each other; know-
ing one allows us to infer the other. To understand a module 
is to know its assumptions. If we cannot understand a mod-
ule, we cannot know when its assumptions are false. We are 
forced to use it timidly, confining ourselves to well-worn use 
cases. Exploration represents an unknowable risk.

This can be an argument against adopting new technology; 
knowing your software will fail in a given context is bet-
ter than blindly hoping it won’t. Even so, we are constantly 
drawn to software we don’t know well enough to dislike. We 
see its capabilities, free of any obvious shortcomings, and 
wish to possess them.

This fixation on possession is centuries old. Arthur alone is 
able to possess the sword in the stone, and thus is “rightwise 
king born of all England.” Arthur, we’re told, holds the sword 
because he has the qualities of a king: he is wise and regal 
and from the proper bloodline. But these qualities are large-
ly subjective, and possession is objective. In effect, holding 
the sword confers these qualities onto Arthur.22

A similar pattern can be seen in the myth of the philoso-
pher’s stone. Representing the highest achievement for any 
alchemist, it had the power to transmute base metals into 
gold, heal any illness, and extend life. While for some it was 
just a metaphor for mastery of alchemy, for most it was a 
physical object. It was reportedly red and heavier than gold. 
It could be created and passed from master to pupil. It could 
be lost and found by some random passer-by. It could be 
possessed, and used, without being understood.

22. 
These sorts of 
symbolic inversions 
are further explored 
in Jean Baudrillard’s 
Simulacra and 
Simulation.



84

Elements of Clojure

Confidence requires understanding. If we cannot under-
stand our software, it becomes oracular; we may trust or 
distrust it, but in either case, we do so blindly. We wrap 
oracles around anything deemed too complex to explain. 
Oracles deliver our search results and news feeds. Modern 
machine learning techniques generate oracles.23 We can 
possess oracles, but we can never understand them. They 
turn us all into perpetual novices.

A module cannot prevent itself from being misused
By putting our clock on a gyroscopic platform, we only trade 
one failure mode for another. The only way we can avoid 
failure altogether is to know a module’s assumptions, and 
anticipate when they might become a problem. We cannot 
solve this through further abstraction, and so we must ad-
here to a convention: only use a module when it is useful.

Unfortunately, it can be very difficult to anticipate failure. 
Understanding the implementation of our software isn’t 
enough; we have to know what its environment might throw 
at it.24 Often, this is learned through experience; the easiest 
way to know that a failure mode exists is to see it happen. 
Our job is not simply to understand how software is imple-
mented but to understand the consequences of that imple-
mentation.

If a model ignores too much, we can grow our model, re-
place our model, or narrow its intended use
If we cannot safely ignore a facet of our environment, the 
most obvious solution is to stop ignoring it. We can do this 
by either adding that facet to our existing model or by recre-
ating the model from scratch.

Alternatively, we can continue to ignore that facet and shift 
the blame onto the user: our module was never meant to 
be used in that sort of environment. Our clock was never 
meant to be put on a ship. Our teletype emulator was nev-

23. 
Techniques for 
supervised machine 
learning are a means 
of automatically 
generating inductive 
models.
We describe which 
inputs should coincide 
within the model, 
and the algorithm 
determines what the 
model needs to ignore 
to accomplish this.  
These models are 
typically opaque  
and thus oracular.  
We can describe their
past behavior but not 
their assumptions or 
the resulting failure 
modes.

24. 
The “seniority”  
of an engineer derives 
more from their ability 
to predict adverse 
environments than  
from mastery of any 
particular technology.
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25. 
This process, called 
“chunking”, is 
described further in 
George A. Miller’s 
seminal paper The 
Magical Number 
Seven, Plus or Minus 
Two.

er meant to display emoji characters. Our application was 
never meant to be used by people with more than 32 letters 
in their surname. In the language of the lean startup, this is 
known as “firing your customer.”

Models are useful because they’re small
Over time, models grow. Sometimes we call this adding a 
feature, other times fixing a bug. In either case, the effect is 
the same: the model reflects more and more of its environ-
ment. This reduces its assumptions, making it more robust, 
but also makes it harder to understand.

In his story On Exactitude in Science, Borges describes a guild 
of cartographers that creates a 1:1 scale map, which is sim-
ply draped over the kingdom:

The following Generations, who were not so fond of the 
Study of Cartography as their Forebears had been, saw 
that that vast map was Useless, and not without some Pi-
tilessness was it, that they delivered it up to the Inclemen-
cies of Sun and Winters.

If we can’t fit a model in our head, it has little value. This lim-
it is more a property of our understanding of a model than of 
the model itself; as we internalize the model, individual fac-
ets coalesce into larger, more manageable concepts.25 For 
individuals, or even small teams, a growing model doesn’t 
present a problem as long as their understanding grows 
along with it. It is the model’s rate of growth that must be 
managed, rather than its absolute size.

If we want to teach our model to someone else, however, we 
must consider its absolute size. Knowing that a model can 
be comprehended by experts tells us nothing; every model 
ever created seemed tractable to someone. What matters is 
whether it can be comprehended by anyone else. If not, we 
should consider throwing it away.
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Starting from scratch is costly
When solving a problem with software, few people begin 
by designing their own silicon, operating system, and pro-
gramming language. We avoid reinventing the accreted lay-
ers of hardware and software even though they are, for our 
purposes, over-engineered; they make fewer assumptions 
than necessary.

These legacy solutions have grown by accretion, making 
them a reflection of everything they’ve been used to accom-
plish, even the things that are no longer relevant. For any 
specific problem they are too general and too distracted by 
the past.

And yet, in almost every case we continue to use them. This 
is because the inefficiencies and unnecessary complexity 
are a reasonable price to pay for not having to build it our-
selves. And unless we are very certain our problem will nev-
er change, the generality of these underlying layers makes 
our software more robust to change.

When replacing software, we should only cut away what we 
can no longer use.

If a module makes unrealistic assumptions, users can 
wrap it, create conventions around its use, or discard it
If our clock must be kept level, our users can put it on a gy-
roscopic platform, never move it from their mantlepiece, 
or look for another clock. Each of these may be reasonable 
reactions, but neither the platform nor the mantlepiece are 
universal solutions. We can make a clock with fragile as-
sumptions because there are many clocks out there, with 
assumptions and failure modes that are complementary to 
ours. If we don’t solve a user’s problem, someone else will.
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If a module cannot be discarded, it may destroy what it 
doesn’t reflect
Sometimes an abstraction cannot be easily replaced.

In rural France, before the rule of Napoleon, land ownership 
was a complex affair. Common pastures were shared within 
a village, or between villages, according to need. The fruit 
on a tree belonged to whichever family planted it, regardless 
of who owned the land. Fruit fallen from the tree belonged to 
whoever gathered it. If a tree was felled, the trunk belonged 
to the family, the branches to their neighbors, and the leaves 
and twigs to whoever gathered them. Where boundaries 
existed, they would be regularly adjusted in response to 
changing circumstances. Where rules were fixed, their ex-
act nature would vary from village to village.

While perfectly clear to each villager, this situation was a 
cacophonous mess for the government officials. They could 
only tax what they could measure, and the rural model of 
ownership defied easy measurement. Their solution was 
simple: they sent in the surveyors, who drew maps assign-
ing a single owner to each parcel of land, and a year later the 
tax collectors came calling.

As a result, ownership within these villages became more 
rigid. If the map said a family owned a parcel of land, they 
paid taxes on it, which made sharing the land an expensive 
proposition. By basing taxation on a simplistic model, the 
French government forced their citizens to conform to that 
model.26

Mandatory abstractions are coercive; if the environment 
doesn’t fit their assumptions, we’re forced to create an en-
vironment that does. These assumptions shape the lives of 
the people who use them, and in time they begin to feel ob-
vious, just a natural reflection of how things are meant to be. 
Slowly, they fade from view.

Any software chosen for us is coercive. Enterprise soft-
ware is sold to one person and used by many others. If the 
software makes unrealistic assumptions, the users cannot 

26. 
Many other examples 
of this phenomenon 
can be found in James 
L. Scott’s Seeing Like 
a State.
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easily replace it. They are forced to shape themselves to its 
needs. As creators of software, we cannot afford to ignore 
the impact our models have on their environment.

Software would be easy if things never changed
Software must change with its environment. If it doesn’t, it 
will eventually become useless. This can only be avoided 
by choosing an environment that is naturally stable or by 
simulating stability by wrapping our software in further ab-
stractions and conventions.

Libraries of mathematical routines, often written in FOR-
TRAN, have survived with minimal changes for decades. 
This is because math doesn’t change very quickly. The un-
derlying hardware, however, does. The LINPACK library, 
written in the 1970s, was targeted at vector supercomputers 
like those made by Cray. In the early 1990s, LINPACK was 
supplanted by LAPACK, which targets modern cache-based 
architectures. Even so, these libraries are among the most 
intrinsically stable software ever written.

Everywhere else, software survives unchanged only be-
cause of our continued efforts. Batch data-processing soft-
ware written in COBOL still runs on mainframes because 
the company has built layers of software and institutional 
conventions around it. The original UNIX tools are useful for 
data analysis only where we have avoided the use of bina-
ry formats or nested data representations like JSON or EDN. 
Depending on your perspective, these sorts of efforts may be 
pragmatic or decades-long examples of the sunk cost fallacy.

In either case, it is clear that vanishingly little software re-
tains value without continuous, sometimes drastic, change. 
Given this, we should stop drawing comparisons between 
software and civil engineering. A bridge is a solution to a 
largely static problem; it may undergo maintenance, but 
change is almost always accomplished by building a new 
bridge. Software, on the other hand, is a solution to an ev-
er-changing problem.27

27. 
All metaphors 
relating to physical 
construction are 
fundamentally flawed. 
For one, software has 
no spatial constraints; 
no matter how closely 
we’ve packed our 
software, we can 
always add something 
in between. But if 
we must choose 
a metaphor, city 
planning is far better 
than bridges. A city  
is in constant flux,  
too large to 
understand in its 
entirety, and its 
residents will always 
demand more than 
they have. Anyone 
wishing to pursue this 
line of inquiry should 
read Jane Jacob’s 
Death and Life of 
Great American Cities 
and Kevin Lynch’s 
Image of the City.
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To create software of lasting value, then, we must minimize 
the effects of change wherever possible. The environment 
for any software component includes the users, the problem 
domain, and other software. We cannot control our users, 
and we often have limited control over how our problem do-
main evolves. We can, however, control how changing one 
software component affects the others.
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Systems of Modules
Whenever we change a piece of code, we risk invalidating 
assumptions made elsewhere in our codebase. Our modules 
succeed by minimizing how often this occurs. Even small 
systems are too large to understand top to bottom, so we 
cannot simply consider all the other code whenever we make 
a change. We want to limit the unintended effects of our 
changes, even if we don’t fully understand the environment.

There are two fundamental strategies for accomplishing this. 
We can build a principled system, which has predictable re-
lationships between its modules. Alternately, we can build 
an adaptable system, which has sparse and flexible relation-
ships between its modules.

A principled system minimizes internal indirection and is 
usually structured as a hierarchy. The implementation of 
each component is guided by the central design principles. 
These principles, applied from the top down, allow each 
component to make broader assumptions. This makes each 
component smaller and often faster, since there are consis-
tent methods used throughout.

This gives the code a minimal quality, even a certain ele-
gance. In the words of Saint-Exupéry, there is nothing more 
to take away. Hierarchies can also be learned gradually; we 
can decompose from the top down, beginning at the root and 
peeling away layers to reveal the underlying implementation.

These systems, however, are highly interdependent. If work 
is split between children, each implicitly assumes the exis-
tence of all the others. They lean upon each other like a house 
of cards. If even a single one is out of place, the entire system 
can come crashing down.

Each piece of a principled system serves a single purpose. 
If two such systems share a component, then neither can 
shape it. The shared component must strike a balance, guid-
ed by its own design principles. Without a coherent principle 
throughout, indirection forms. An interface is born.

A principled tower
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As components on both sides of the interface come and go, 
the interface remains. The permanence of an interface en-
ables the surrounding code to change. It allows our systems 
to adapt.

An adaptable system has a high degree of internal indirec-
tion and is usually structured as a graph.28 Each component 
is purposefully blind to the internals of adjacent compo-
nents, which leads to redundancies. This makes each com-
ponent larger, and often less efficient.

A graph is a much more flexible model, but it resists incre-
mental decomposition. It has no clear root, leaves, or layers. 
Without a predictable structure, exhaustive exploration is 
the only way to discover where or how something is accom-
plished. There are no organizing principles, no commanding 
heights from which we can perceive and control the system.

These approaches are contrasted in Christopher Alexan-
der’s Notes on the Synthesis of Form. In it, he discusses differ-
ent traditions around building homes, drawing a distinction 
between what he calls selfconscious and unselfconscious 
cultures.

An unselfconscious culture, he says, has no word for “ar-
chitect”; each person builds their own home. The design is 
refined over generations, and construction is taught using 
direct demonstration. While simple and sometimes crude, 
they reflect the constraints and variation of their environ-
ment.

28. 
The interplay between 
the hierarchy and 
graph is a recurring 
theme in the works 
of the post-modern 
critical theorists Gilles 
Deleuze and Felix 
Guattari, notably  
in their book A 
Thousand Plateaus. 
This is a challenging 
book, not least 
because of the lack 
of shared vocabulary 
with computer 
science; they refer to 
tree- like structures 
as “arborescent” and 
graph-like structures 
as “rhizomatic”.  
A determined reader, 
however, will find it 
rich and rewarding.
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In a selfconscious culture, the design and construction of 
homes is a specialized task. It is taught in schools using ab-
stract principles. These designs are often complex and or-
nate, and they reflect the vision of the architect.

The structures of an unselfconscious culture are adaptable; 
they reflect the present needs of the inhabitants. If an igloo 
grows too warm, someone can poke a hole in the wall. When 
it grows too cold, the hole can be filled in. There is a constant 
awareness of the environment and constant adaptation as 
it changes. Such structures tend to be only large enough to 
hold a single family.

The structures of a selfconscious culture are principled; 
they not meant to change. They may reflect their environ-
ment by building atop solid earth or by orienting the win-
dows north/south in warmer climates. Alternatively, they 
may simply pour a concrete foundation and install air con-
ditioning. If the environment changes, the structure is hard-
ened against the change rather than adapting to it. Some 
principled structures, like skyscrapers or stadiums, can 
hold thousands of people.

Clojure is a mostly unprincipled language. Its few principles, 
such as immutability, promote the creation of adaptable 
software. Rich Hickey’s own definition of ‘simplicity,’ from 
his talk Simple Made Easy, describes an adaptable system: 
software components that are not entwined.

This suggests that our systems should be built from inde-
pendent components. We can create an ecosystem of func-
tions and modules, all separated by strong indirection, and 
combine them as needed.
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But when an interface only serves a single purpose, indi-
rection is hard to maintain. An interface pulled in many di-
rections is intrinsically stable, but an interface pulled in a 
single direction tends to shift. Over time, the code on either 
side of the interface will grow interdependent. The interface 
itself will become vestigial, serving only to mislead future 
developers.

This is demonstrated by the mitochondrion, known to stu-
dents everywhere as “the powerhouse of the cell.” A few 
billion years ago the mitochondrion was an independent or-
ganism, but within the stable environment of the cell, that 
independence was an inefficiency. Today, it is unable to ex-
ist outside the cell and produces many times more energy 
than it needs itself. It has become just another interdepen-
dent part of a principled whole.

Even if we could maintain this indirection, it’s not clear we’d 
want to. Crossing an interface puts us in a new context, forc-
ing us to relearn our surroundings. If both sides of the inter-
face share a single purpose, this is an enormous cost with 
no obvious benefit.

Principled components allow us to explore within a uniform 
context without any need to reorient ourselves. This unifor-
mity, however, makes them fragile. They are constructed 
towards a fixed purpose and cannot be easily reoriented. 
We cannot shift the Arc de Triomphe without rebuilding the 
streets and buildings that radiate outward from it. The core 
assumptions are foundational, and even a small change in-
validates everything.

And so we do not want a system that is wholly principled. We 
want a collection of principled components, built to be dis-
carded, separated by interfaces that are built to last.

An adaptable chain
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These systems, which are able to replace every part of them-
selves but still retain their fundamental character, are often 
referred to as “complex adaptive systems.” They are pres-
ent everywhere in the world, from the human cell to global 
markets.29

Consider the Monarch and Viceroy butterflies. The Monarch 
butterfly is toxic and avoided by predators. The Viceroy but-
terfly is not toxic, but closely resembles the Monarch. Clear-
ly, the Viceroy assumes the existence of the Monarch, which 
makes its existence precarious. If the Monarch were to dis-
appear, the Viceroy wouldn’t change its appearance to some 
other inedible butterfly – it would be eaten out of existence.

It is the ecosystem, not the organism, that adapts to change. 
If an organism makes an invalid assumption, it disappears 
and its niche is filled by something else. These roles are fun-
gible because the organisms consume and emit the same 
resources; they share a common interface.

29. 
So far, researchers 
have been able to 
draw analogies 
between a wide 
variety of real-world 
phenomena but 
unable to describe  
a common generative 
mechanism that 
connects them.  
As such, the literature 
around complexity is 
interesting but only 
indirectly applicable  
to software.  
Anyone wishing to go 
deeper on this subject 
should start with 
Complex Adaptive 
Systems by Miller  
and Page.

Short-lived principled components separated by long-lived interfaces
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For an interface to disappear, every participant on one side 
must disappear. A symbiotic relationship between two spe-
cies is relatively fragile; the extinction of either species will 
render the relationship moot. The carbon-based building 
blocks of life, however, are foundational to millions of spe-
cies and have persisted for billions of years. Likewise, the 
REST protocol for our web application will vanish without 
customers, but TCP and POSIX will likely last for centuries.

Where possible, we should avoid creating foundational in-
terfaces. If an interface only touches our own software, we 
can learn from our design mistakes and move past them. In-
terfaces calcify when they are exposed to the world, which 
can allow our mistakes to outlive us. If we must create a 
foundational interface, we should first allow it to mature 
within our own code.

We should build our software from principled components 
wherever possible, separated by interfaces where neces-
sary. Modules that share common assumptions should live 
in the same component, and modules with dissimilar as-
sumptions should be kept separate. This keeps the effects of 
changes small and predictable.

If our problem domain is stable and uniform, it has little 
need for indirection. Any domain, when poorly understood, 
seems to fit this description. As an industry, we are biased 
towards simple solutions born from incuriosity. What we 
don’t know, we fill in with blind optimism.

Given this, Clojure’s opposing bias towards the adaptable 
approach seems reasonable; it saves us from ourselves. But 
we cannot find the right balance without a deep understand-
ing of our software, the environment in which it exists, and 
what they both may become.
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Composition
Composition is the combination of separate abstractions 
to create a new abstraction. These abstractions, once com-
bined, begin to define each other’s environment. Through 
composition, we create the context by which each individual 
piece can be judged. It allows us to discuss specific trade-
offs, rather than the concept of a trade-off. Composition is 
applied abstraction.

In the classic mathematical sense, composition is the com-
bination of functions, and most composition in Clojure does 
involve functions. The ultimate goal of software composi-
tion, however, is not simply to define new functions but to 
define processes that pull data from their environment, 
transform that data, and push the result back into their en-
vironment.

A process has execution isolation (when it runs), has data 
isolation (where it runs), and is sequential. It corresponds to, 
and is named for, a process in early operating systems that 
lacked support for threads. However, it can also describe 
threads in a modern operating system, a chain of asynchro-
nous callbacks, or any other mechanism which shares these 
properties.30

The process, as defined here, is the smallest unit of stand-
alone computation. If software does not perform all steps 
(pull, transform, and push) at least once, it can only be use-
ful when combined with other software. Consider the UNIX 
yes command, reproduced here:

(defn yes [] 

  (loop [] 

    (println "y") 

    (recur)))

This utility neither pulls nor transforms data. It will simply 
push an endlessly repeating stream of "y\n" to stdout un-

30. 
Such mechanisms 
include Erlang’s 
processes, Carl 
Hewitt’s actors, 
and Smalltalk-72’s 
objects, all of which 
communicate via 
asynchronous 
message passing.
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til the process is killed. This is useful when placed upstream 
of another process with interactive prompts but useless by 
itself.

Similarly, consider a function that reproduces the function-
ality of /dev/null:

(defn dev-null [] 

  (loop [] 

    (read-line) 

    (recur)))

This utility endlessly pulls from stdin and then drops the 
data on the floor. This is only helpful when an upstream pro-
cess has useful effects beyond what it pushes to stdout.

The cat command pulls the contents of one or more files 
and pushes them to stdout without any intermediate 
transformation:

(require '[clojure.java.io :as io]) 

 

(defn cat [& filenames] 

  (doseq [f filenames] 

    (doseq [l (->> f io/reader line-seq)] 

      (println l))))

If we place this upstream of a process that only pulls from 
stdin, that process can now indirectly access the filesys-
tem. Moving data is part of any nontrivial computation, but 
not very useful on its own. We can use cat to view the con-
tents of a file, but only when it’s fed into a teletype emulator.

A process that doesn’t produce data is obviously of limited 
use. A process that doesn’t transform data is only useful 
where it makes data available to other processes. But what 
about a process that doesn’t consume data?
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(defn yes [expletive] 

  (loop [] 

    (println expletive) 

    (recur)))

This version of yes is parameterized and could be seen 
as transforming expletive into an infinite recurrence of 
itself. However, this infinite stream is not particularly in-
teresting; once we’ve seen one line, we’ve seen them all. In 
general, the output of a process is only as interesting as its 
inputs.31 Where the data pulled in by a process is eventually 
available, parameters must be immediately available. When 
using our process in isolation, the parameters are limited to 
the information literally at our fingertips. If we are the only 
source of information, our software can only tell us varia-
tions on what we already know.

Software applications comprise one or more processes. The 
building blocks for our software may not constitute a full 
process; they’re often more useful when they don’t. But to 
create software that is useful on its own, we must construct 
whole processes, and we often combine those processes 
into a larger system.

31. 
There are a few 
exceptions to this rule, 
largely in the domain  
of mathematics.  
A program that 
calculates the 
digits of pi takes no 
inputs but can emit 
an endless stream 
of data. Likewise, 
pseudorandom 
number generators 
or visualizations of 
fractal geometry 
can generate large 
amounts of data given 
a small input.  
This data, however, is 
only useful when fed 
into other processes.
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32. 
A more common 
term for this is ‘side 
effect.’ That term 
implies that our effects 
are incidental and 
avoidable, but truly 
they are a necessary 
component of our 
software.

A Unit of Computation
Processes are a ubiquitous concept dating back to the earliest 
days of computing. It is the smallest piece of code which can be 
understood on its own, in part because it does something use-
ful on its own, but also because it provides strong indirection 
between itself and its environment. If we cannot understand 
the system as a whole, we can at least understand it one pro-
cess at a time.

Processes provide (some) data isolation
A process can only access data that is globally visible or passed 
in as a parameter. Once initialized, its universe is bounded and 
fixed, consisting of both immutable values and mutable refer-
ences. Communication between processes is only possible via 
shared references, and any change to such a reference is called 
an effect.32 These references are often hidden behind an inter-
face, which provides structure around how and when effects 
occur.

For a reference to be safely shared, we must be careful in our in-
teractions. Without coordination, simultaneous access can lead 
to data inconsistencies or even permanent corruption. But even 
if our shared data structure is thread-safe, updating the inter-
nal reference is rarely enough on its own. For our update to trig-
ger an action in another process, we must signal that an update 
has occurred. This is why inter-process communication often 
uses queues, which provide both thread-safety and signaling.

Mutability may be necessary at the edges of our processes, but 
it should be avoided elsewhere. If we pass a mutable data struc-
ture into a function, we cannot prevent that function from shar-
ing it with another process, creating a new edge in our system. 
Even if we know a particular function doesn’t touch another 
process, that may change in the future. This implicit process 
composition can make it near-impossible to reason about the 
system as a whole. As a rule, we should only use internal mu-
table data structures in principled components, which have 
predictable behavior and limited capacity for change.
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Processes provide (some) execution isolation
Processes run sequentially; each operation is executed in 
order, one at a time. When reasoning about a process, we 
rely heavily on the operations having a deterministic order. 
When we invoke a function, we place its operations ahead of 
all the others. Within our process, function invocation has 
an immediate effect.

The same cannot be said of inter-process communication. 
We can update a shared reference, and even signal that the 
reference was updated, but that is the extent of our power. 
We cannot control when or how another process will react to 
that new information.

But while processes cannot control one another, they are still 
interdependent. To pull the contents of a file into our process, 
we must request it from the operating system and then wait 
for the signal that it’s available. A process cannot force us to 
react to its effects, but by delaying the effects it can force us 
to wait for them.

Like function invocation, by waiting for data we place its ar-
rival ahead of other operations. Unlike function invocation, 
our process is a passive participant. When a process is ac-
tive, we can reason about it in isolation. When it’s paused, we 
must consider the surrounding processes that will allow it 
to continue.

To read a file, we must traverse a cache, an I/O scheduler 
which prioritizes and deduplicates pending reads, a control-
ler on the physical disk, and finally the storage medium itself. 
These are directly responsible for fetching data, but other 
processes using the file system may be indirectly responsi-
ble for delays. Holding the entire system in our head can be 
difficult at best.

This is only necessary, however, when our process waits too 
long. If we never wait longer than we’re willing to, there’s no 
need to consider the system as a whole. The simplest way to 
achieve this is to have low expectations. Modern hardware 
is far more capable than modern software would suggest, 
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but most of us choose to be content with the performance 
we have. This can be a helpful strategy for coping with the 
complexity of modern systems.

A complementary strategy is to define timeouts, which pre-
vent a process from ever waiting too long. If a timeout elaps-
es, we don’t try to understand why; we just try to recover. As 
long as timeouts don’t occur too often, it’s much simpler to 
let a system sometimes fail than to chase down every unex-
plained pause.

These strategies allow us to consider each process in iso-
lation, so long as performance isn’t a primary concern and 
some failures are acceptable. In more stringent domains we 
must fight to keep the system as simple as possible, so that it 
can fit in our head. Any system that exceeds our understand-
ing will inevitably grow a bit slow and flaky, no matter what 
the design specification says.

Example: a REPL

(defn repl [] 

  (loop [] 

    (-> (read) 

      eval 

      print) 

    (recur)))

The REPL is a simple, but complete, process: it pulls in ex-
pressions via read, transforms them via eval, and pushes 
the result out via print. Normally, it will spend most of its 
time waiting on the result of read; the computer can per-
form the eval-print-loop steps much faster than we can type 
in new expressions. However, it’s easy to craft an expression 
which takes more time to eval than it did to type:

(print (eval '(reduce + (range 1e9))))
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Likewise, we can turn print into our bottleneck:

(print (eval '(range 1e9)))

Since range returns a lazy sequence, eval will return im-
mediately, leaving print to push a billion numbers to what-
ever process is responsible for displaying the result. Since 
print can likely send numbers faster than they can be dis-
played, print will spend most of its time waiting for a signal 
that the downstream process can accept more data.

While it’s convenient to talk about “pulling” and “pushing” 
data, both operations tend to require bidirectional com-
munication. To pull data, a process must send information 
about what data it wishes to receive, or at least signal that 
it is ready to receive more information over a pre-existing 
channel. To push data, a process must confirm that down-
stream processes have the capacity to process this new data. 
There are exceptions where the data is of a predetermined 
type and bounded in size, but such guarantees are rare in 
practice.

Example: a web service

(defn handler [request] 

  (-> request 

    request->query 

    query-db! 

    result->response))

This function implements the API specified by the Ring 
specification, transforming data representing an HTTP re-
quest into data representing an HTTP response. Our han-
dler is a parameter passed into a larger process, which is 
responsible for pulling in the encoded request and pushing 
out an encoded response. But these are not the only edges in 
our process; handler also pulls data from an external data-
base. Our process follows these steps in sequence:
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• pull in an encoded request from the client

• transform the encoded request into a Ring request

• the handler is invoked

• transform the Ring request into a database query

• pull the result of that query from the database

• transform the database result into a Ring response

• the handler returns

• transform the Ring response into an encoded response

• push the encoded response to the client

A Ring webserver is a framework; it invokes our code rather 
than being invoked by it. This frees us from having to con-
sider the complexity of effects when writing our code, but 
it also makes it more difficult to understand what our soft-
ware is doing in production. To reason about the operational 
properties of our code, we must understand the process that 
surrounds it.

Example: a frontend application

(on-click refresh-button 

  (fn [] 

    (query-service 

      (fn [data] 

        (update-dom data)))))

This code registers a callback on a “refresh” button. Each 
click will fire off a request, and the response will be used to 
update the data shown in the browser. If we click the button 
multiple times, it will fire off multiple requests, which may 
execute concurrently. This does not represent a single pro-
cess, but rather a mechanism that spawns processes. Each 
time the callback is triggered a process starts, executes 
once, and exits.
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Since there’s no real value in allowing concurrent refresh 
operations, we might decide to preclude them:

(on-click refresh-button 

  (fn [] 

    (disable! refresh-button) 

    (query-service 

      (fn [data] 

        (update-dom data) 

        (enable! refresh-button)))))

This is a process because a second click cannot occur until 
the first has been fully handled. In a process, we have to de-
cide what to do when our environment demands more than 
we can provide. Here, we’ve signaled to the environment 
(our user) that we will ignore any clicks while a request is 
still in flight.

To create a fully robust process, we must also decide what to 
do when the backend service is unavailable. We might retry 
the request, either indefinitely or up to a maximum number 
of retries. We might perform our retries at fixed intervals, 
or increase the intervals using exponential backoff. Alter-
natively, we might simply display a message to the user that 
the refresh failed.

These strategies, describing what our process will do when 
its environment provides too much or too little, are called an 
execution model. A process with a well-defined execution 
model can be safely considered in isolation.

Queues by themselves do not provide isolation. Queues cou-
ple the execution of processes and, by default, allow one pro-
cess to block the other indefinitely. If neither places limits 
on how long it will wait to push or pull data, they cannot be 
understood separately. Such processes share a single exe-
cution model.
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In some cases this is unavoidable. Limits are tied to the 
specifics of our application and do not generalize. Since the 
components of our file system sit beneath many such appli-
cations, they cannot define their own timeouts. All they can 
do is wait indefinitely and rely on someone else to make the 
hard choices. Those choices, however, must be made some-
where, and if we allow an execution model to span too many 
processes, it will quickly exceed our understanding.
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Building a Process
A process is composed of pull, push, and transform phases. 
These phases should be kept separate until the last possible 
moment. Consider this parameterized REPL:

(defn repl [read eval print] 

  (loop [] 

    (->> (read) 

      eval 

      print) 

    (recur)))

The source from which we read, the sink to which we print, 
and our evaluation strategy can all be understood in isola-
tion. There would be no purpose to asking for a read-eval 
or eval-print parameter. Their composition is only useful 
at the apex of our process definition.

These phases are separable because they serve different 
roles. The push and pull phases are operational: they deal 
with code in motion and define the limits of our process. The 
transform phase is functional: it deals with code at rest and 
defines the purpose of our process. The push and pull phases 
enforce invariants that can only be designed and judged giv-
en a specific context. The transform phase, wrapped in those 
invariants, can safely ignore much of that context.

Consider Clojure’s sort function. According to its docu-
mentation, it returns the elements of the input collection in 
sorted order, but this is only partially true. If we try to run 
(sort (range 1e12)), it will throw an OutOfMemoryEx-
ception. Since sort only works if certain conventions are 
followed, we must consider the context in which it’s used.

Contrast this with the GNU sort utility. It explicitly protects 
against this failure mode by pulling in chunks of data, sort-
ing each chunk, and spilling the result to disk. Once the in-
put is exhausted, it will merge-sort all the chunks together, 
pushing the result downstream.33

33. 
Of course, this still 
leaves open the 
possibility that we 
might run out of 
disk space, but that 
resource is at least 
several orders of 
magnitude less scarce.
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Both examples use the same sorting mechanism, but only 
GNU’s sort is explicit about what surrounds it. If we fail to 
do the same when using Clojure’s sort, we create a leaky 
abstraction; our implicit assumptions become everyone’s 
concern.

Leaky abstractions are fine, so long as they sit within a prin-
cipled component that shares their assumptions. If our code 
is meant to load a configuration file, for instance, we may 
slurp it into memory rather than read the file incremen-
tally. Once we’ve done that, there’s no real harm in calling 
Clojure’s sort; our code is already fragile in the face of over-
sized inputs.

But a principled component cannot span multiple process-
es; principled components rely on weak internal indirection, 
and process boundaries provide strong indirection. Leaky 
abstractions may be fine in the right context, but leaky pro-
cesses are always dangerous. Our processes may be larger 
than GNU’s sort, but at the edges we must always enforce 
the assumptions within.

Pulling Data
The pull phase acquires data from outside the process and 
verifies that it is properly shaped and sized. It also defines 
what happens when the data is invalid or unavailable.

All too often, however, we focus on acquiring data and ig-
nore the rest. Consider this function, which yields a lazy se-
quence over the lines of a text file:

(require '[clojure.java.io :as io]) 

 

(defn file-line-seq [filename] 

  (->> filename 

    io/reader 

    line-seq))
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By simply passing this along to our transform phase, we ig-
nore a number of failure modes:

• The size of each line is unbounded, except by the fact that a 
String cannot contain more than two billion characters. If 
we don’t have four gigabytes of free memory each time we 
call next on our seq, we risk an OutOfMemoryException.

• If the text file contains encoded data such as JSON or EDN, 
the encoding may be malformed.

• Any time we touch the file, an IOException may be thrown.

By ignoring these scenarios, we make them fatal. Our pro-
cess will simply end, possibly logging an error, forcing the 
surrounding processes to pick up the pieces.

Sometimes this is fine. If a configuration file is excessively 
large, malformed, or unavailable, all we can do is fail and 
wait for someone to debug the issue. But configuration files 
are unique inputs in many ways:

• Changes to the configuration data and the code that con-
sumes it are often reviewed by the same people.

• As ancillary data, a configuration format that is fundamen-
tally limited in both size and shape doesn’t also limit the 
usefulness of a process.

• Configuration data is read during a deployment process, 
when there are people on hand to detect and respond to 
failures.

Most input data is not inherently limited in its origin, shape, 
and size. Most new input data does not have its effects care-
fully monitored by a trained engineer. In most cases, we 
must make our processes intrinsically robust.34

In a robust process, the pull phase should invoke the trans-
form phase. This gives us greater flexibility in how we re-
spond to errors; different scenarios may call for different 
kinds of transforms. If our pull phase simply yields a la-
zy-seq, this relationship is inverted, and our control flow is 
greatly constrained.

34. 
Alternatively, we can 
make our systems 
intrinsically robust to 
the loss of processes, 
using something 
like Erlang’s OTP 
framework.  
This approach, 
however, requires 
significant support 
at the language or 
runtime level to ensure 
errors are captured 
and propagated.  
Since no such 
mechanism currently 
exists in the Clojure 
ecosystem, we 
will not spend any 
time exploring this 
approach.
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More generally, by consuming a lazy-seq that performs 
effects, we’re forced to make operational decisions. When 
an error occurs inside next, we have three choices: we can 
retry, truncate the seq, or allow the exception to leak out. 
Since we can’t retry forever, this can only be a supplementa-
ry solution. Truncation, at best, allows us to infer that some-
thing failed, and the conflation of all possible error modes is 
an operational decision in itself. And if we allow exceptions 
to bubble out, we must confront them directly.

Our transform phase is, by definition, code free from oper-
ational concerns. If we simply compose over lazy effects, we 
allow our pull phase to encompass the core of our process. 
In such a process, nothing can be considered in isolation.

Transforming Data
There are only three things we can do with data. We can 
accrete data by adding it to an existing collection, reduce 
data by discarding information from an existing collection, 
or reshape data by placing it in a different kind of collection.

We accrete data when we don’t know enough to do anything 
else or when we want to work with a larger batch of data.

We reduce data when inputs that yield the same output are 
interchangeable. When we compute a sum, we imply that  
[3 3], [1 2 3], and [6] look the same to us. When we look up 
:callisto in a map, we imply that {:callisto 1, :io 3} 
and {:callisto 1, :europa 5} aren’t meaningfully dif-
ferent. This is abstraction; we are treating different values 
as equivalent.

All the lessons of the previous chapter apply here. Data an-
alysts tend to avoid simplistic metrics like mean and vari-
ance because datasets that intersect on these metrics can 
have important differences. The reduction of data requires 
more care than the rest of our software; it contributes most 
of the value and most of the risk.
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Lastly, we reshape data when we want to make it easi-
er to accrete and reduce. When we store large amounts of 
data, we prefer a database to a collection of flat files, even 
though both allow the same fundamental operations. This 
is because the database gives us random access to the data, 
which in most cases matters a great deal. Reshaping is not 
abstraction, because it is motivated by differences that do 
matter.

The study of data structures and algorithms is the study of 
the strengths and weaknesses of different data shapes. The 
importance of this is often overstated; in most cases, it suf-
fices to understand the tradeoffs of Clojure’s core data struc-
tures. It is not, however, something that can be ignored.

Data should never be implicitly reshaped. If our function 
needs a set, it should demand a set. This allows others to 
judge whether our code is a good fit for their problem and 
prevents pathological situations where a collection is re-
shaped repeatedly rather than once.

We should also try to keep our accretions and reductions 
separate. Sometimes this is impossible; adding values to a 
set both accretes elements and loses information about or-
dering and duplicate values. But if they are separable, we 
should expose them as pieces to be composed, rather than 
as an indivisible unit.

Pushing Data
The output of the transform phase is not just data, but rath-
er a descriptor of the effects that the process should per-
form. Most often, this is a description of what data should be 
pushed to other processes and how.35 The push phase acts 
upon that descriptor.

In the simplest case, the descriptor is only the data that 
should be pushed. When we pass "hello world!" to 
println, we are giving a literal description of what println 
should write to stdout. Even for more complex effects, this 

35. 
A descriptor may also 
describe a pull effect, 
such as an HTTP GET 
request, but the design 
considerations for 
both are largely the 
same.



Composition

113

is still true:

{:url    "http://example.com" 

 :method :post 

 :body   "hello world!"}

This is not a literal description of an encoded HTTP request, 
but there is a direct correspondence between each part of 
this map and the encoded request. However, unlike print-
ln, a typical HTTP client library allows us to also specify 
how the request is made. This tells the client that any 3XX re-
direct responses should be automatically followed, so long 
as the chain of redirects isn’t too long:

{:url               "http://example.com" 

 :method            :post 

 :body              "hello world!" 

 :follow-redirects? true 

 :max-redirects     99}

The meaning of each field in this descriptor may seem 
self-explanatory, but we should not fool ourselves into 
thinking our descriptor has well-defined semantics. Data 
is just data; it doesn’t have intrinsic meaning. The seman-
tics of our data are defined by the effects it produces when 
passed into our functions. These effects should be predict-
able whenever possible, but data cannot prevent itself from 
being interpreted in surprising ways.

The push phase begins wherever our functions perform ef-
fects. Put another way, it begins wherever the meaning of 
our data is defined. Sometimes this is a straightforward ex-
ecution of a descriptor:

(println "hello world!")

It’s sometimes useful, however, to close over the descriptor 
and return a function which can be invoked at our leisure:



114

Elements of Clojure

(defn printer [s] 

  (fn [] 

    (println s)))

We cannot introspect on a printer; to know what it does, 
we have to invoke it and see what happens. We cannot alter 
what’s printed, only what comes before or after:

(defn prepend [printer prefix] 

  (fn [] 

    (println prefix) 

    (printer))) 

     

(defn append [printer suffix] 

  (fn [] 

    (printer) 

    (println suffix)))

A function cannot be reduced or reshaped; it can only ac-
crete. By exchanging a string for a printer, we gain seman-
tics but lose almost everything else. We should seek to delay 
this as long as possible.36

A process is composed of operational phases at the edg-
es and a functional phase in the middle. The operational 
phases guard against the pathological behaviors found in 
production; they interact with the environment and enforce 
invariants on how it can affect the process. Unless we are 
very good at predicting and simulating these pathologies, 
the only true test is to deploy them and see what happens.

36. 
The effects of some 
functions can be 
altered using dynamic 
state; the println 
function, for instance, 
can be redirected 
by binding a new 
Writer to *out*. 
This is only necessary, 
however, when 
we’ve discarded our 
data prematurely. 
Wherever possible, 
we should alter our 
effects by altering their 
descriptor.
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But if they’re well crafted, these operational phases allow 
us to understand and test the functional phase in isolation. 
This plays to the strengths of Clojure and its REPL-driven 
development process. We should try to keep most of our 
code in the middle and as little as possible at the edges.

Unfortunately, it can be easy to lose track of where we are. 
We have no way to know if a function or lazy-seq performs 
effects, which makes it easy for them to leak into the func-
tional core of a process. It can be helpful to keep the oper-
ational and functional phases in separate namespaces. By 
only allowing functional namespaces to reference other 
functional namespaces, we guard against the inward creep 
of operational concerns.
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Composing Processes
For many applications, a single process does not suffice. 
The application may require separate concurrently operat-
ing parts, or it may be easier to understand when structured 
that way. To accomplish this, we compose processes into a 
larger system. The graph describing the set of active pro-
cesses and the relationships between them is the topology 
of our system.

A process is a mostly opaque thing. We cannot directly alter 
it or see inside it. All we can do is share data and wait for it to 
do the same. This means that, unlike most things in Clojure, 
processes are not values. We can only refer to them through 
a layer of indirection, using a process identifier, or commu-
nicate with them via a channel.

In a static process topology, channels usually suffice. Con-
sider a simple bash pipeline:

cat moons | grep 'callisto' | less

This pushes the contents of the moons file into grep, which 
filters out the lines containing ‘callisto’ and pushes them 
along to less, which pushes them to the terminal. Commu-
nication in this pipeline is anonymous and externally con-
figured. No one knows who their neighbors are; they just 
interact with the stdin and stdout channels they were 
initialized with.

This approach, however, is only possible if our system never 
changes. If we want to create new channels, we’ll need some 
way to identify processes in our system. Unique identifiers, 
however, are only possible if our processes never die. More 
often, our identifiers are connected to processes through a 
layer of indirection. This identifier is then mapped onto a 
specific process via resolution.

The most familiar example of this is DNS resolution, which 
maps domain names onto IP addresses. DNS provides a one-
to-many mapping between domain names and IP addresses, 
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allowing for basic load balancing and failover behavior. This 
is true of most resolution mechanisms designed for larger 
systems. In practice, there is little difference between reso-
lution and discovery, which fetches a list of processes able 
to provide a particular service.

It’s often useful to create a router, which provides indirec-
tion by exposing a single channel and distributing the data 
on that channel across multiple processes. This pattern 
is ubiquitous at every level of real-world systems. Even a 
thread pool is a router; functions are placed on a shared 
queue and distributed to threads which execute them.

Beyond these basic concepts, it’s difficult to describe pro-
cess composition in the abstract. Processes may share a 
common structure, but system topologies vary widely de-
pending on the application. A taxonomy of system design 
patterns is beyond the scope of this book.

But if we examine the messages between processes, one last 
pattern emerges: most data pushed to another process is 
a command describing an effect they must perform. Often 
this command is passed along a chain of processes in a va-
riety of forms until it arrives at a process where the effect 
can realized.

When we call (println "hello world!"), the encoded 
bytes of our string are pushed from process to process until 
they arrive in a desktop application. In that application, the 
string is rendered into a graphical representation of itself. 
That representation is then pushed to the graphics driver, 
which passes it along to the graphics hardware, which final-
ly renders it to our display.

Likewise, when we make an HTTP POST request, our goal 
is not merely to send the bytes of our request to another 
machine; we want our request to be interpreted by that ma-
chine and acted upon. Often this requires that our request, 
or some variation of it, be forwarded to other machines we 
cannot directly access.
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The proximate goal of any push is communication, but the 
ultimate goal is the completion of a task. A task begins 
when a command enters our system. It might be started by 
a keystroke, a packet from the network, or the creation of 
the system. A task ends when the consequences of an effect 
are uncertain. We can display text on a screen, but we can’t 
dictate how the user will respond; we can write a value to the 
database, but we can’t dictate if it will ever be read.

It is useful and often necessary for the completion of a task 
to be acknowledged back up the chain of processes that 
propagated the command. This is because processes and 
the channels that connect them can be unreliable. Incom-
plete tasks must be remembered somewhere within a sys-
tem, so that if no acknowledgement is forthcoming, they can 
be retried or reported as failed. This state should exist in a 
single place at the edge of the system, so that other process-
es can safely forget a command once they’ve passed it along.

The formal mechanism by which we accomplish and ac-
knowledge tasks is called a protocol. Communication pro-
tocols like TCP and HTTP dictate the mechanism and fail-
ure modes for communication across a single edge of our 
system topology. When designing a system, we must do the 
same for performing tasks across our entire system. The de-
sign of these system-level protocols are, again, beyond the 
scope of this book.37

A task ends where the consequences of an effect become un-
certain, but that is also where the value of a system begins. 
Displaying text or persisting data are necessary elements 
of building a useful system, but they are not sufficient. Sys-
tems are not intrinsically useful; like all abstractions they 
are judged with respect to their environment, which is in 
constant flux.

37. 
Anyone wishing to 
learn more about the 
inherent complexities 
of distributed systems 
should read Nancy 
Lynch’s Distributed 
Algorithms, which is 
an extensive, if fairly 
academic, survey of 
the field.
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This book cannot tell you if your software is useful. There 
are no formulas to reduce our software down to an objective 
measure of worth. It can, however, help you judge for your-
self. The ideas in this book are meant to provide a frame-
work into which you must contribute your own understand-
ing of your software and its environment.

We cannot solve software design, but we can reduce it to its 
essential questions. Happy reduction.




