
Zachary Tellman

Elements
of Clojure

© 2016-2019 Zachary Tellman

All rights reserved.
No part of this book may be reproduced or transmitted in any
form or by any means, electronic or mechanical, including
photocopying, recording, or by any information storage and
retrieval system, without permission in writing from the author.

Front cover image by Sandhya Hegde.
Book design by Viewy - www.viewy.it

First printing January 2019.

ISBN 978-0-359-36058-1

Contents

Introduction

Acknowledgements

Names
Naming Data
Naming Functions
Naming Macros

Idioms
When using inequalities, prefer < and <=
If a function accumulates values, support every arity
Use option maps, not named parameters
No one should have to know you’ve used binding
If you have mutable state, use an atom
An explicit do block implies side effects
Use the narrowest possible data accessor
Use letfn for mutual recursion
Java interop should be obvious
Use for to create cartesian products
nil should be the absence of only a few values

Indirection
Method Dispatch
What is an Abstraction?
A Model for Modules
Consequences of our Model
Systems of Modules

Composition
A Unit of Computation
Building a Process
Composing Processes

4

5

7
15
21
24

29
31
33
36
40
46
51
52
54
55
56
58

63
68
70
73
81
90

97
101
108
116

4

Elements of Clojure

Introduction
This book tries to put words to what most experienced pro-
grammers already know. This is necessary because, in the
words of Michael Polanyi, “we can know more than we can
tell.”
Our design choices are not the result of an ineluctable chain
of logic; they come from a deeper place, one which is visceral
and inarticulate.

Polanyi calls this “tacit knowledge”, a thing which we only
understand as part of something else. When we speak, we
do not focus on making sounds, we focus on our words. We
understand the muscular act of speech, but would struggle
to explain it.

To write software, we must learn where to draw boundaries.
Good software is built through effective indirection.
We seem to have decided that this skill can only be learned
through practice; it cannot be taught, except by example. Our
decisions may improve with time, but not our ability to ex-
plain them.

It’s true that the study of these questions cannot yield a closed-
form solution for judging software design. We can make our
software simple, but we cannot do the same to its problem
domain, its users, or the physical world. Our tacit knowledge
of this environment will always inform our designs.

This doesn’t mean that we can simply ignore our design pro-
cess. Polanyi tells us that tacit knowledge only suffices until
we fail, and the software industry is awash with failure. Our
designs may never be provably correct, but we can give voice
to the intuition that shaped them. Our process may always
be visceral, but it doesn’t have to be inarticulate.

And so this book does not offer knowledge, it offers clarity. It
is aimed at readers who know Clojure, but struggle to artic-
ulate the rationale of their designs to themselves and others.
Readers who use other languages, but have a passing famil-
iarity with Clojure, may also find this book useful.

5

The first chapter, Names, explains why names define the
structure of our software, and how to judge whether a name
is any good.

The second chapter, Idioms, provides specific, syntactic ad-
vice for writing Clojure which is clean and readable.

The third chapter, Indirection, looks at how code can be
made simpler and more robust through separation.

The final chapter, Composition, explores how the constit-
uent pieces of our code can be combined into an effective
whole.

Acknowledgements
This book began six years ago in a St. Louis bar, where Chas
Emerick and I raced to register elementsofclojure.com
on our phones. I won. In the intervening years, the intent be-
hind that title has been shaped and reshaped by conversa-
tions with Kyle Kingsbury, Aaron Crow, Reid McKenzie, Tom
Faulhaber, Brandon Bloom, David Nolen, Kovas Boguta, and
many others.

During the writing of this book, over a thousand people have
purchased early access. My gratitude for their patience and
engagement cannot be overstated; I hope everyone finds it
was worth the wait.

Above all, I’d like to thank my wife, Sandhya Hegde, who
drew the cover art and has participated in countless conver-
sations about the book I was going to write, the book I was
writing, and the book I have written. None of this would have
been possible without her insight and her support.

Names

Composition

Indirection

Idioms

8

Elements of Clojure

Names
Names should be narrow and consistent. A narrow name
clearly excludes things it cannot represent. A consistent
name is easily understood by someone familiar with the
surrounding code, the problem domain, and the broader
Clojure ecosystem.

Consider this function:

(defn get-sol-jupiter
 "Does a deep lookup of key `k` within m̀̀ under
 :̀sol` and :̀jupiter̀ , returning ǹot-found` or
 ǹil` if no such key exists."
 ([m k]
 (get-sol-jupiter m k nil))
 ([m k not-found]
 (get-in m [:sol :jupiter k] not-found)))

We name the first parameter m because it can represent any
map, and naming it map would shadow the function of the
same name. The second parameter is named k because it
can represent any key, and avoid naming it key for the same
reason. We name the optional third parameter not-found
because that’s the name used by Clojure’s get function, as
is the default value of nil.

The function name itself, however, is potentially confusing.
Without reading the docstring or implementation, a reader
might reasonably assume it did any of the following:

(get-in m [:sol-jupiter k])

(get (.sol-jupiter m) k)

(http/get (str "http://sol-jupiter.com/" k))

This name introduces a lot of ambiguity, considering the
function can be replaced by its implementation without los-
ing much concision:

(get-sol-jupiter m :callisto)

(get-in m [:sol :jupiter :callisto])

Names

9

1.
‘Abstraction’ can
describe this
separation, but can
also describe other,
different concepts.
‘Indirection’
is preferable, because
it is narrower.
This distinction is
expanded upon in the
third chapter.

But what if we were to change the name to describe its pur-
pose, rather than its implementation?

(get-jovian-moon m :callisto)

(get-in m [:sol :jupiter :callisto])

Suddenly, the function begins to justify its existence. Jupi-
ter’s moons may be stored under [:sol :jupiter] for the
moment, but that’s just an implementation detail, hidden
away behind the name. Our name is now a layer of indirec-
tion, separating what the function does from how it does it.
We can introduce even more indirection by renaming the
first parameter:

(get-jovian-moon galaxy :callisto)

Now the data structure used for our galaxy is also an im-
plementation detail, hidden behind a name.

Indirection, also sometimes called abstraction1, is the foun-
dation of the software we write. Layers of indirection can
be peeled away incrementally, allowing us to work within a
codebase without understanding its entirety. Without indi-
rection, we’d be unable to write software longer than a few
hundred lines.

Names are not the only means of creating indirection, but
they are the most common. The act of writing software is
the act of naming, repeated over and over again. It’s likely
that software engineers create more names than any other
profession. Given this, it’s curious how little time is spent
discussing names in a typical computer science education.
Even in books that focus on practical software engineering,
names are seldom mentioned, if at all.

Luckily, other fields have given names more attention. Phi-
losophers, in particular, have a special fascination with
names. In their terminology, the textual representation of
a name is its sign, and the thing it refers to is its referent.
Until the late 19th century, the prevailing theory was that
signs and referents were arbitrarily related. A town named

10

Elements of Clojure

Dartmouth doesn’t necessarily sit at the mouth of the Dart
River. If it did, and the river dried up, the name wouldn’t
have to change. In the right context, ‘Dartmouth’ might refer
to a crater on the moon. The sign was just a means of point-
ing at something.

Then a logician named Gottlob Frege pointed out an issue:
in Ancient Greece, there were two celestial bodies named
Phosphorus (Morning Star) and Hesperus (Evening Star), both
of which happened to be Venus. At first glance, this doesn’t
seem to be a problem; both signs share a referent, so they’re
just different ways of talking about Venus. But if Evening
Star and Morning Star are just synonyms for each other,
then these sentences should be interchangeable:

• Homer believed the Morning Star was the Morning Star.

• Homer believed the Morning Star was the Evening Star.

The first sentence is obviously true, but the second one is
almost certainly false: that fact wasn’t discovered until hun-
dreds of years after Homer’s death. It’s clear, then, that they
are not synonyms. We cannot only consider what a name
references, we must also consider how it is referenced. Frege
called this the sense of a name.2

We can construct a similar example using Clojure’s seman-
tics. Consider two vars, a and b:

(def a 42)

(def b 42)

While a and b point to the same value, we cannot claim
these two statements are equivalent:

(= a a)

(= a b)

A var is a reference, a means of pointing at a referent. Clo-
jure does its best to blur the line between reference and refer-
ent; vars are automatically replaced by their runtime value.

2.
In the following
century, many
philosophers have
expanded on Frege’s
work, but their work
isn’t directly relevant
to names in software.
Anyone interested
in following this thread
should begin with Saul
Kripke’s Naming and
Necessity.

Names

11

But references are a form of indirection, and this gives us a
degree of freedom in how the code changes over time. While
a and b are equal today, that may change tomorrow.

The sense of a var describes what it is, but also what we
expect it to become. If we’ve defined separate vars for the
same value, it’s because we expect them to diverge. They
have the same referent but different senses.

Let’s consider a higher-level example: an id. We need a means
of generating and representing unique identifiers, and after
some discussion we settle on UUIDs, which are randomly
generated 128-bit values. Typically, a UUID is displayed as a
collection of hexadecimal characters and hyphens, such as
4a4c7d8b-bb8a-441a-982f-80fc90e80e47.

Having settled on this implementation, we can consider two
sentences:

• Our unique identifiers are unique.

• Our unique identifiers are 128-bit values.

The first sentence is true, but the second is only true for our
chosen implementation. Should the implementation change,
it might suddenly become false. Since the second sentence
is not timelessly true, we must treat it as effectively false;
anything else would enshrine the 128-bit implementation
as permanent, constraining our future designs.

Our sign, in the philosophical sense, is a name’s textual rep-
resentation: in the case of our identifier, id. A name’s refer-
ent is what it points to: in our example, the UUID implemen-
tation. A name’s sense is the set of fundamental properties
we ascribe to it: in this case, the identifier’s uniqueness.
When we encounter a new name, we only need to under-
stand its sense. The underlying implementation, the refer-
ent, can change without us ever knowing or caring.

A narrow name reveals its sense. Narrow doesn’t necessari-
ly mean specific; a specific name captures most of an imple-
mentation, while a general name captures only a small part.

12

Elements of Clojure

An overly general name obscures fundamental properties
and invites breaking changes. An overly specific name ex-
poses the underlying implementation, making it difficult
to change or ignore the incidental details. A narrow name
finds a balance between the two.

Narrowness doesn’t only derive from our choice of sign; we
prefer id to unique-arbitrary-string-id. The sense can
be communicated through the surrounding code, through
documentation, and through everyday conversation. This
means that narrowness can be created or destroyed without
ever touching the code. Carelessly substituting uuid for id in
emails will distort the sense, no matter how clear our docu-
mentation. Without constant care, narrowness may disappear.

This is especially difficult because the sense can remain un-
spoken. In the case of the Morning and Evening Star, differing
senses came with differing signs, but in practice this is rarely
true. An engineer working on the serialization format for the
id may decide to use the 128-bit encoding, implicitly treat-
ing that encoding as a fundamental property. Another engi-
neer working on a log parser might write a regex that looks
for 36 hexadecimal and hyphen characters, implicitly doing
the same. Both can have a reasonable conversation about ids
without any hint that they are speaking past each other.

This is not a problem that can be fully solved. We speak am-
biguous words, we think ambiguous thoughts, and any proj-
ect involving multiple people exists in a continuous state
of low-level confusion. It is, however, a problem that can be
minimized through consistency.

A name whose sense is consistent with the reader’s expecta-
tions requires less effort from everyone. If the map function
is redefined within a namespace to return a data structure,
this must be carefully documented. Readers must deliber-
ately remember what context a map exists in, and will begin
to second-guess their intuitive understanding of the code.
The code and documentation, then, must clarify what sort
of map is being discussed everywhere, not just within the in-
consistent namespace.

Names

13

Even if we clearly communicate the sense of a name, there
can still be inconsistencies between the sense and the ref-
erent. Our id example suffers from this; our identifier is
unique, but UUIDs are only very likely to be unique. If a poor
random-number generator is used, collisions between gener-
ated identifiers are not only possible, but plausible. Unless we
redefine our identifiers as “probably unique”, the assumption
of uniqueness will be baked into the surrounding code.

If this is a design flaw, it is a flaw shared across a wide vari-
ety of software. We can poke similar low-probability holes
in most invariants using cosmic rays, data corruption that
still satisfies checksums, and so on. Errors caused by these
inconsistencies can be very expensive; they can only be un-
derstood by someone familiar with the implementation and
the assumptions made in the surrounding code. Despite
this, checking to determine whether every UUID is unique
is impractical. An inconsistent name is not necessarily a
bad name.

Often, we can only choose how we wish to be inconsistent.
Consider a datatype called student in software used for
university administration. The intuitive sense of this name
will differ by department:

• For the admissions office, a student is anyone eligible to
apply to the university.

• For the bursar’s office, a student is anyone attending the
university.

• For the faculty, a student is anyone registered for classes.

If each department writes their own software, each can use
student without confusion. A sign’s sense is inferred from
its context, and defining separate contexts allows us to re-
use it. More typically, we’d put each department in its own
namespace, but then we risk the admissions namespace
invoking the bursar namespace with the wrong kind of
student. Keeping contexts separate requires continuous
effort by the reader, and failing to keep them separate cre-
ates subtle misunderstandings.

14

Elements of Clojure

If we avoid separate contexts, our datatype can only be as
narrow as its most general case. If student represents any-
one who might apply to the university, then our sense is only
consistent for the admissions department. To be consistent
for everyone, we’d have to create different names for each
sense and use student for none of them.

In other words, the only way to be fully consistent is to have
a one-to-one relationship between signs and senses. This
means that we must invent a sign for each sense, but also
that readers must agree on their sense. This is why student
must be avoided at all costs: a dozen different readers might
ascribe a dozen different senses. Most natural names have
a rich, varied collection of senses.3 To avoid ambiguity we
must use synthetic names, which have no intuitive sense in
the context of our code.

Category theory is a rich source of synthetic names. ‘Monad’,
to most readers, means nothing. As a result, we can define
it to mean anything. Synthetic names turn comprehension
into a binary proposition: either you understand it or you
don’t. Between experts, synthetic names can be used to
communicate without ambiguity. Novices are forced to ei-
ther learn or walk away.

Conversely, a natural name is at first understood as one of
its many senses. Everyone understands, more or less, what
an id is. In a large group, however, these understandings
might have small but important differences. These under-
standings are refined, and gradually converge, through
examination of the documentation and code. At the cost of
some ambiguity, novices are able to participate right away.

Natural names allow every reader, novice or expert, to rea-
son by analogy. Reasoning by analogy is a powerful tool, es-
pecially when our software models and interacts with the
real world. Synthetic names defy analogies,4 and prevent
novices from understanding even the basic intent behind
your code. Choose accordingly.

3.
The ambiguity and
utility of everyday
names is explored
more fully in William
Kent’s Data and
Reality, which
was published in
the late 1970s just
as relational
databases were
coming into vogue.

4.
Of course, people
will still try. This is how
the monad became a
burrito.

Names

15

Naming Data
Every var, let-bound value, and function parameter must
be named. When we define a var representing immutable
data, we control both the sign and referent:

(def errors #{:too-hot :too-cold})

However, we do not control the sense; two people can rea-
sonably disagree over whether :too-hard and :too-soft
should be added to the set. Even if we narrow our names, the
problem persists:

(def porridge-errors #{:too-hot :too-cold})

(def bed-errors #{:too-hard :too-soft})

Can we add :too-watery and :too-gummy to por-
ridge-errors, even if Goldilocks never had those specific
complaints? We can sidestep this issue by never changing
the value:

;; DO NOT CHANGE UNDER PENALTY OF HEAT DEATH

(def errors #{:too-hot :too-cold})

But if the data will truly never change, we should consider
whether it belongs in a var. We prefer Math/PI to 3.14...,
because it’s shorter and prevents subtle copy-paste errors.
If errors is used in multiple places, and we don’t want to
put threats next to all of them, keeping it around is reason-
able. Otherwise, it may be best to replace errors with its
value.

When we define a function parameter, we only control the
sign; the data it represents could be literally anything. This
problem is exacerbated by Clojure’s lack of a type system,
but even in languages with sophisticated type systems, most
types can encode values that fall outside the type’s sense;
we might represent an id using a 128-bit value, but not all
possible 128-bit values are valid identifiers in our system.
Dependent type systems, like those used in Agda and Idris,

16

Elements of Clojure

try to address this problem by narrowing the possible val-
ues that the type can represent. But even these languages
don’t prevent us from making simplistic assumptions or
protect us from the consequences when the world doesn’t
conform to them. Type systems are a tool, not a solution.

If a parameter’s sense assumes certain invariants, we can
enforce them at the top of the function. The relationship
between our functions is not adversarial; we do not need
to check and re-check invariants at every level of our sys-
tem. The relationship between our software and the outside
world, however, can be adversarial. Most invariant checks
should exist at the periphery of our code.

When defining a let-bound value we control the sign, but
we also control the right side of the let binding. While a
function parameter’s value may be unconstrained, a let-
bound value is constrained by all the code that precedes it.

Names provide indirection. For vars, the indirection hides
the underlying value. For function parameters, the indirec-
tion hides the implementation of the invoking functions. For
let-bound values, the indirection hides the right-hand ex-
pression:

(let [europa ...

 callisto ...

 ganymede ...]

 (f europa callisto ganymede))

In this expression, if it’s self-evident what europa, callis-
to, and ganymede represent, then the right side of the let
binding can be ignored. The right side is a deeper level of
the code, relevant only if the what of europa doesn’t satisfy,
and we need to understand the how.

This is possibly Clojure’s most important property: the syn-
tax expresses the code’s semantic layers. An experienced
reader of Clojure can skip over most of the code and have a
lossless understanding of its high-level intent.

Names

17

Of course, this is only true when we avoid side effects. If the
right side of a let-binding does something more than re-
turn a value, we have to read it exhaustively to reason about
how it affects the surrounding code. Readers’ ability to safe-
ly skim Clojure relies on both its syntax and its emphasis on
immutability.

The threshold for self-evidency depends on the reader. Ev-
ery name we create seems self-evident as we create it. Six
months later, it may seem less so. A reader with domain ex-
pertise and no engineering background will find only a sub-
set of names self-evident. An experienced engineer with no
domain knowledge will find a different subset to be self-ev-
ident.

Each time they encounter an unfamiliar name, readers
must dive deeper into the code and documentation. In the
limit case, where every name is unfamiliar and no name is
used twice, readers would have to read everything to make
sense of anything. However, if we choose consistent names,
only a few deep dives are required to understand the core
concepts.

Code buried deep under layers of indirection will have a
smaller, more determined audience. From that audience,
we can expect familiarity with names used elsewhere in the
code, and a willingness to understand unfamiliar concepts.
Names at the topmost layers of the code will be read by nov-
ices and experts alike, and should be chosen accordingly.

Where a value is used repeatedly, we may prefer to use a
short name rather than a self-evident one. Consider this
code:

(doseq [g (->> planets

 (remove gas-planet?)

 (map surface-gravity))]

 ...)

18

Elements of Clojure

If we renamed g to surface-gravity, most readers could
understand the intent without reading the right-hand ex-
pression. Unfortunately, this shadows the function of the
same name and is fairly verbose. By itself, though, g doesn’t
mean anything. The reader is forced to carefully read both
sides of the binding to understand the intent.

If the left-hand name isn’t self-evident, the right-hand ex-
pression should be as simple as possible. This is preferable
to the above example:

(let [surface-gravities (->> planets

 (remove gas-planet?)

 (map surface-gravity))]

 (doseq [g surface-gravities]

 ...))

Finding good names is difficult, so wherever possible we
should avoid trying. If we’re performing a series of transfor-
mations on data, we shouldn’t name every intermediate re-
sult. Instead, we can compose the transformations together
using —>> or some other threading operator.

If a function’s implementation is more self-explanatory than
any name you can think of, it should be an anonymous func-
tion. This can be true even for relatively complex functions.
A large function, named or anonymous, asserts that it can-
not be made easier to understand using indirection. A large
function is not necessarily a bad function.

If a function has grown unwieldy, but you can’t think of any
good names for its pieces, leave it be. Perhaps the names
will come to you in time.

Names

19

There cannot be hard and fast guidelines for choosing a
good name, since they have to be judged within their con-
text, but where the context doesn’t call for something spe-
cial, there can be a reasonable collection of defaults. The de-
faults given here are not exhaustive and mostly come from
common practices in the Clojure ecosystem. In a codebase
with different practices, those should be preferred.

If a value can be anything, we should call it x and limit our
operations to =, hash, and str. We may also call something
x if it represents a diverse range of datatypes; we prefer x
to string-or-float-or-map, but those possible datatypes
must be explicitly documented somewhere.

If a value is a sequence of anything, we should call it xs. If
it is a map of any key onto any value, it should be called m. If
it is an arbitrary function, we should call it f. Sequences of
maps and functions should be called ms and fs, respectively.

A self-reference in a protocol, deftype, or anonymous func-
tion should be called this.

If a function takes a list of many arguments with the same
datatype, the parameters should be called [a b c ... &
rst], and the shared datatype should be clearly documented.

If a value is an arbitrary Clojure expression, it should be
called form. If a macro takes many expressions, the variad-
ic parameter should be called body.

However, for most code we’re able to use narrower names.
Let’s consider a student datatype, which is represented as
a map whose keys and values are well defined using either
documentation or a formal schema. Anything called stu-
dent should have at least these entries, and sometimes only
these entries.

The name students represents a sequence of students.
Usually these sequences are not arbitrary; all students
might, for instance, attend the same class. Any property
shared by these students should either be clear from the
context or clearly documented.

20

Elements of Clojure

A map with well-defined datatypes for its keys and values
should be called key—>value. A map of classes onto attend-
ing students, for instance, should be called class—>stu-
dents. This convention extends to nested maps as well; a
map of departments onto classes onto students should be
called department—>class—>students.

A tuple of different datatypes should be called a+b. A 2-vec-
tor containing a tutor and the student they’re tutoring
should be called tutor+student. A sequence of these tu-
ples should be called tutor+students.

Notice that tutor+students is ambiguous; it can either be
a sequence of tutor+student tuples or a single tuple con-
taining students. Likewise, class—>students might be
a single map, or a sequence of class—>student maps. Of-
ten, it’s clear from context which is meant, but otherwise we
have to create a name for our compound datatype. If we call
our tutor-and-student tuple a tutelage, then we can refer
to tutelages without ambiguity.

But tutelage is a synthetic name, as are most names for
compound data structures.5 As such, we need to carefully
document their meaning and only use them where our read-
ers will have read the documentation. The naming conven-
tions given here, like anonymous functions and threading
operators, are a way to avoid introducing new names until
absolutely necessary.

5.
The English language
rarely anticipates our
need for a particular
permutation of nouns.

Names

21

6.
This asymmetry,
and the broader
concept of isolated
data scopes, is
discussed in greater
detail in the final
chapter, Composition.

7.
Only trivial processes,
like echo or cat in
Unix, do not perform
all three actions. This
is also expanded upon
in the last chapter.

Naming Functions
At runtime, our data scope is any data we can see from within
our thread. It encompasses function parameters, let-bound
values, closed-over values, and global vars. Functions can
do three things: pull new data into scope, transform data al-
ready in scope, or push data into another scope. When we
take values from a queue, we are pulling new data into our
scope. When we put values onto a queue, we are making data
available to other scopes. HTTP GET and POST requests can
be seen as pulling and pushing, respectively.

Shared mutable state creates asymmetric scopes. Consider
a public var representing an atom:

(def unusual-events (atom 0))

Any thread can dereference this atom; the current count is
within scope for every thread within our process. However,
if we increment unusual-events we are taking informa-
tion local to our thread and making it visible to all the oth-
ers. Reading from the shared mutable state isn’t a pull, but
writing to it is a push.6

Most functions should only push, pull, or transform data. At
least one function in every process must do all three,7 but
these combined functions are difficult to reuse. Separate ac-
tions should be defined separately and then composed.

If a function crosses data scope boundaries, there should
be a verb in the name. If it pulls data from another scope, it
should describe the datatype it returns. If it pushes data into
another scope, it should describe the effect it has. Some-
times functions simultaneously push and pull data, usual-
ly for reasons of efficiency; in these cases the name should
capture both aspects, and the documentation should care-
fully explain the specific behavior.

If a function takes an id and returns a binary payload, it
should be called get-payload. If it takes an id and deletes
the payload, it should be called delete-payload. If it takes
an id, replaces the payload with a compressed version, and

22

Elements of Clojure

returns the result, it should be called compress-and-get-
payload.

If these functions are in a namespace specific to payloads,
they can simply be called get, delete, and compress-
and-get. We can assume that other namespaces will refer
to our namespace with a prefix, such as payload/get or
p/get. This means that shadowing Clojure functions like
get8 is safe and useful, but we should take care to specify
this at the top of our namespace:

(ns application.data.payload

 (:refer-clojure :exclude [get]))

This signals to our readers that get means something else
in this namespace. We should also define our get at the bot-
tom of the namespace. Then, if we mistakenly use get in-
stead of clojure.core/get somewhere in the middle, the
compiler will complain that get is an invalid symbol rather
than silently use our alternate implementation.

If a function only transforms data, we should avoid verbs
wherever possible. A function that calculates an MD5 hash,
defined in our payload namespace, should be called md5.
A function that returns the timestamp of the payload’s last
modification can be called timestamp, or last-modified
if there are other timestamps.9 A function that converts the
payload to a Base64 encoding should be called —>base64. In
a less narrow namespace, these functions should be named
payload-md5 and payload—>base64.

However, when modifying data we often have to use a verb.
If a function takes a data structure representing a university
and returns a university with a student added to a particu-
lar department, the function should be called add-student.
This name, taken alone, is ambiguous as to whether the stu-
dent is being added to a department or to the university as
a whole. Since the function will be invoked with a depart-
ment parameter, however, this should be immediately clear
in context.

8.
In any place but
Clojure’s core
implementation,
get should imply
pulling data from
another scope.

9.
This means that
the example function
at the beginning of
the chapter should
lose the get and
simply be called
jovian-moon.
It’s cleaner.

Names

23

Some verbs, like conj and assoc, are obviously related to
data transformation. Most verbs, though, are ambiguous. In
some codebases, functions that affect external data scopes
have a ! added to the end of their name. However, this con-
vention is not universal, even among core Clojure functions.
Even if your code uses the ! marker, the best way to keep
things clear for your readers is to avoid impure functions
where possible and document where necessary.

In theory, a namespace can hold an unlimited number of
functions as long as none of them share the same name. In
practice, namespaces should hold functions that share a
common purpose so that the namespace lends narrowness
to the names inside it.

Typically, this means that all the functions should operate
on a common datatype, a common data scope, or both. If all
the functions in a namespace operate on a binary payload,
we can safely omit payload from all the names. If all the
functions in a namespace are used to communicate with a
database, we can easily understand the scope of the func-
tions. If all the functions in a namespace are used to access
a particular datatype in a database, we can both use shorter
names and easily understand the data scope.

A large number of namespaces is taxing for our readers;
if we have ten tables in a database, creating ten different
namespaces just so we can write europa/get rather than
db/get-europa has questionable value. Therefore, we
should add new namespaces only when necessary. By ques-
tioning the need for new namespaces, we implicitly ques-
tion the need for new datatypes and data scopes, which will
lead to simpler code overall.

24

Elements of Clojure

Naming Macros
There are two kinds of macros: those that we understand
syntactically, and those that we understand semantically.
The with-open macro is best understood syntactically:

(defmacro with-open [[sym form] & body]

 (̀let [~sym ~form]

 (try

 ~@body

 (finally

 (.close ~sym)))))

If we fail to type-hint sym as java.io.Closeable or some-
thing similar, our with-open form will give a reflection
warning about a close method. Anyone who doesn’t know
the macroexpanded form of with-open will search their
code for some reference to close, find nothing, and be per-
plexed. To use with-open effectively, we must macroex-
pand it in our heads whenever it appears in the code.

Macros that we understand syntactically require us to un-
derstand their implementation, so they are a poor means of
indirection. They can reduce the volume of our code but not
its conceptual burden. A good name will tell the reader that
it is a macro and prompt them to look at the implementation.
Any name with a with prefix, or which uses the name of a
Clojure special form like def or let, should have a predict-
able macroexpanded form.

If we expect our code to have a small audience, these mac-
ros may become quite large. This can be especially useful to
reduce code size in the lower levels of the code, or in tests. In
these cases, the macros should be defined and used within
a single namespace; the name is unimportant as long as it
isn’t misleading.

However, some macros are too complex to be under-
stood through their macroexpanded form. The go form in
core.async is one such macro; not even the authors can

Names

25

easily describe the macroexpansion for arbitrary code. In
these cases, we must understand the semantics of the trans-
formation. Transforming arbitrary code is difficult and
sometimes impossible; the go macro, for instance, skips
over any anonymous functions defined in its scope. Read-
ers must not only understand the semantics of the transfor-
mation but also its exceptions and failure modes. For this
reason, macros that we understand semantically are also a
poor means of indirection.

Since macros cannot be self-evident, the clarity of the mac-
roexpanded syntax or semantics matters more than the
clarity of the name. Macro names are usually synthetic and
require careful documentation.

Names should be consistent. They should build upon their
associations within the code and within natural language.
Natural names are a powerful, but broad, means of commu-
nicating the sense of a name. Synthetic names are, by defi-
nition, inconsistent. They prevent readers from reasoning
by analogy and bringing their own intuition to bear upon
the problem of understanding the intent behind the code.

Names should be narrow. They should communicate their
sense without potential for confusion. Natural names have
many senses, and they allow groups to assume different
senses for the same sign without ever realizing it. These dis-
parate senses will only converge over time through careful,
deliberate communication. The learning curve for a syn-
thetic name, on the other hand, is a sheer cliff.

Narrowness and consistency are often in tension. Finding
balance requires understanding your audience. Synthet-
ic names have little downside for an audience that already
understands them and enable them to communicate com-
plex ideas. For novices, each synthetic name represents an

26

Elements of Clojure

obstacle that must be surmounted. Natural names allow for
continuous progress but at the risk of misunderstandings
along the way. In different parts of your code, the size and
makeup of the audience will vary. The audience will also
change over time; success with an expert audience will in-
evitably attract less-expert readers.

Names are a fundamental medium for communicating with
your readers. The concepts and terminology in this chapter
are not a formula for choosing perfect names, but they will
give you the tools to enumerate and discuss your options.
These concepts will be used in subsequent chapters to dis-
cuss other design considerations when writing Clojure.

Names

27

Names

Composition

Indirection

Idioms

30

Elements of Clojure

Idioms
Software is understood layer by layer. At each layer, readers
will guess at the underlying intent. As they descend, they’ll
sometimes be proven wrong. Once they stop,10 they’ll have
only their intuition, and any counterexamples found along
the way, to suggest what lies beneath.

A confident reader will, at first, only read the top-most lay-
ers of the code. Each time they’re proven wrong, this con-
fidence is chipped away. Self-doubt may drive readers to
delve deep into the code or may simply drive them away.

Each new layer, if it represents meaningful indirection,
should reveal something new. Yet the lessons learned along
the way should remain valid; an unfamiliar implementa-
tion should represent an unfamiliar idea, not just pointless
variation on something we already understand. Each sur-
prise should be meaningful, and any software which con-
stantly surprises its readers is poorly written.

Idioms provide a mapping between code structure and in-
tent. Consistently used, they allow readers to trust their own
intuition. Some of the idioms described here have naturally
developed in the Clojure community, and others would ben-
efit the community if they saw wider use. This chapter will
present each in turn, explain its underlying rationale, and
explore when it might not be appropriate.

10.
And everyone has
to stop, eventually.
Drilling past sixty
years of accreted
indirection is more
than a life’s work.

Idioms

31

When using inequalities, prefer < and <=
A lifetime of infix notation is hard to shake. Even if prefix
notation for arithmetic is more consistent, for most readers
it will never feel quite natural.

Addition and multiplication are fairly familiar; + returns
the sum of everything to its right, and * returns the product.

Subtraction and division are a bit more complicated. The
expression (- a b) reads clearly, but most readers will
have to pause to remember whether (- a b c) is left or
right associative. A useful mnemonic here is to think of

• (- a b c …) as (- a (+ b c …)); and

• (/ a b c …) as (/ a (* b c …))

but it’s usually best to write this out explicitly.

But the most confusing operators, by far, are the inequal-
ities. As children, we were often taught the meaning of
3 > 1 by giving the > tiny teeth, transforming it into a hun-
gry alligator that always wants to eat the largest number.
Here the infix notation isn’t an incidental detail; it’s central
to our mental model.

Small wonder, then, that (> a b) is difficult to read. The
> doesn’t point at anything; we have to move it over by one
term before realizing that the hungry alligator wants to eat
a. Here, too, there is a useful mnemonic: we can think of >
as a downward slope, and < as an upward slope. This way,
we can read (> a b c) as a descending collection of values
from a to c and (< a b c) as ascending.

Even with this mnemonic, readers can get confused. Sub-
traction and division, at least, have a fixed relationship
between the left and right terms. With each inequality, we
have to decide anew whether to use (< a b) or (> b a).
Almost always, this decision is arbitrary; we can reduce the
burden on the reader by choosing one and sticking with it.

32

Elements of Clojure

Inequalities should be ordered least to greatest, except
where reordering terms hurts code clarity.

(cond

 (< a b) ...

 (= a b) ...

 (> a b) ...)

(cond

 (< a b) ...

 (= a b) ...

 (< b a) ...)

Here, the first version reads more cleanly, even though
it uses >. A typical exception to this rule will be a similar
collection of almost-identical predicates, where we’d rather
change the operator than the terms.

Idioms

33

If a function accumulates values, support every arity
Typically, when calling reduce we pass in a 2-arity function,
like so:

(reduce (fn [x y] (+ x y)) numbers)

However, if numbers has zero arguments in it, reduce will
invoke our function with zero arguments, throwing an ex-
ception. This wouldn’t be a problem if we provided an initial
value:

(reduce (fn [x y] (+ x y)) 0 numbers)

In this case, if numbers has zero arguments in it, reduce
will return 0. If numbers has one argument in it, reduce
will invoke our function with 0 and the first element. How-
ever, many built-in Clojure functions provide their own ini-
tial value:

> (+)

0

> (+ 1)

1

> (conj)

[]

> (conj [1])

[1]

> (concat)

()

> (concat [1])

(1)

34

Elements of Clojure

In each of these three cases, the 0-arity method returns a
base value, the 1-arity method returns the same value it was
passed, and the 2-arity case combines the two parameters.
For larger arities, they perform a reduction:

(defn concat

 ...

 ([a b & rst]

 (reduce concat (concat a b) rst)))

In some circles, this is referred to as a monoid, which is a
0-arity function that returns an identity value and a 2-arity
function that takes two values of the same type and returns
a single combined value. Combining the identity value with
any other value returns that value unchanged.

A common example of this is a set, whose 0-arity function
returns an empty set, and 2-arity function returns the union
of the two sets.

(require '[clojure.set :as set])

> (set/union)

#{}

> (set/union #{1})

#{1}

> (set/union #{1 2} #{2 3})

#{1 2 3}

Unlike concat, +, and set/union, conj combines dissim-
ilar types: the first parameter is a collection, and all subse-
quent parameters are elements. For this reason, it’s not a
monoid, but the underlying implementation looks very fa-
miliar:11

11.
Neither the conj
nor concat
implementations
shown here are
identical to what’s in
clojure.core, but
they are equivalent.

Idioms

35

(defn conj

 ...

 ([coll x & rst]

 (reduce conj (conj coll x) rst)))

This is because reduce allows dissimilar types. We can use
reduce with monoids that combine values, but also with any
function that accumulates values like conj. This is true even
for functions on specialized datatypes, like concat-stu-
dents or conj-moon. Any such function should support 0,
1, and 2-arity calls and also have a variadic implementation.

Of these arities, only the 0 and 2-arity cases are interesting;
the 1-arity implementation simply returns the value, and
the variadic implementation is a reduction. The value re-
turned by the 0-arity function isn’t always obvious; conj re-
turns a vector even though it can also aggregate using maps,
sets, and lists. Whatever the value, it should be a reasonable
default for most uses.

Implementing every arity isn’t worthwhile if a function is
seldom used and unlikely to be used more in the future. It
should also be avoided if there is no appropriate default
0-arity value. In these cases, we can provide only a 2-ari-
ty method, which forces every call to reduce to provide its
own initial value.

36

Elements of Clojure

Use option maps, not named parameters
If a function takes multiple parameters with default values,
we’re forced to sort them by importance.

(defn pi

 “Calculates pi to ǹ̀ digits, with optional

 parameters for whether it should be done

 efficiently and correctly.

 Both default to `truè .”

 ([n]

 (pi n true))

 ([n efficiently?]

 (pi n efficiently? true)

 ([n efficiently? correctly?]

 (cond

 (not correctly?)

 3.0

 (not efficiently?)

 (->> (repeatedly #(pi n))

 (take 100)

 last)

 :else

 (math/pi-to-n-digits n))))

Here, if we specify correctly?, we’ll also have to specify
efficiently?, even though one obviates the other. This is
true for any function which represents optional parameters
using multiple arities: if we specify one parameter, we have
to specify all the parameters that come before it. To do this
effectively, we have to carefully think about which parame-

Idioms

37

ters are more likely to be specified. With even two or three
parameters, there’s rarely a clear hierarchy. With the dozen
or more parameters required by complex APIs or applica-
tion logic, it’s a lost cause.

So instead, we can specify our parameters by name rather
than position:

(defn pi

 [n &

 {:keys [efficiently?

 correctly?]

 :or {efficiently? true

 correctly? true}}]

 ...)

We’ve defined n as a positional parameter because it’s re-
quired, and we’ve left all the others as named options. Now,
calculating pi incorrectly only requires (pi n :correctly?
false).

Parameters we don’t wish to specify can be ignored. De-
faults can be changed, and parameters added, without ever
having to update the call sites. For any function with more
than one optional parameter, this has obvious benefits.

This convenience, however, does not come free. With each
invocation, we must build a hash-map and then look up
each key in turn. For even moderately complex functions,
this can add noticeable overhead.

Also, functions with named parameters don’t cleanly com-
pose. Let’s assume that our internal function math/pi-to-
n-digits also takes some named parameters, and we want
pass all of our parameters one level deeper:

38

Elements of Clojure

First, we take the parameters passed into pi and construct a
hash-map called options. But since our inner function also
expects individual parameters, we then flatten the map back
into a list using (apply concat) and then apply that list
to math/pi-to-n-digits. Option parameters read nicely
when they’re written out by hand, but everywhere else they
add complexity and noise.

While we write the parameters only once, they typically pass
through many layers of our code. This is especially true for
the top-level configurations for an application; the parame-
ters are provided at the entry point for the process and have
to propagate into many different parts of the code. Fortu-
nately, we can solve this by merely removing the & symbol:

(defn pi

 [n &

 {:keys [efficiently?

 correctly?]

 :or {efficiently? true

 correctly? true}

 :as options}]

 (cond

 (not correctly?)

 3.0

 (not efficiently?)

 (->> (repeatedly #(pi n))

 (take 100)

 last)

 :else

 (->> options

 (apply concat)

 (apply math/pi-to-n-digits n))))

Idioms

39

(defn pi

 [n &

 {:keys [efficiently?

 correctly?]

 :or {efficiently? true

 correctly? true}

 :as options}]

 (cond

 (not correctly?)

 3.0

 (not efficiently?)

 (->> (repeatedly #(pi n))

 (take 100)

 last)

 :else

 (->> options

 (apply concat)

 (apply math/pi-to-n-digits n))))

Here, our options are contained in a map. No additional data
structures need to be created, and the map can be passed
as-is into our inner function. Any function which accepts
optional named values should use this approach. The only
cost relative to named parameters is writing out an extra
pair of curly braces. However, both approaches introduce
measurable overhead; in performance-sensitive contexts,
we should only use positional parameters.

The natural shape for a collection of options is a map.
Named parameters introduce complexity because, when
invoked, they force us to turn that map into something else.
But if we only ever write out the parameters by hand, they’re
harmless. In practice, this is only ever true of macros; any
function we write will eventually be wrapped in another
function. Use named parameters sparingly, or not at all.

(defn pi

 [n

 {:keys [efficiently?

 correctly?]

 :or {efficiently? true

 correctly? true}

 :as options}]

 (cond

 (not correctly?)

 3.0

 (not efficiently?)

 (->> (repeatedly #(pi n {}))

 (take 100)

 last)

 :else

 (math/pi-to-n-digits n options)))

40

Elements of Clojure

No one should have to know you’ve used binding
Months ago, in the distant past, we wrote these functions:

(defn a [x]

 (b x))

(defn b [x]

 (c x))

(defn c [x]

 (library/compute x))

Today, after updating our dependencies, we discover that
library/compute now has an additional Boolean param-
eter which makes everything go faster. Unfortunately, a few
parts of our code can’t handle the raw speed, so we have
to make this optional. Since a is our public API, we have to
thread the parameter all the way through:

(defn a [x turbo-mode?]

 (b x turbo-mode?))

(defn b [x turbo-mode?]

 (c x turbo-mode?))

(defn c [x turbo-mode?]

 (library/compute x turbo-mode?))

But once we start adding true and false to every invoca-
tion, we realize that turbo-mode? is almost always true, so
we add default values:

Idioms

41

(defn a

 ([x]

 (a x true))

 ([x turbo-mode?]

 (b x turbo-mode?))

(defn b [x turbo-mode?]

 (c x turbo-mode?))

(defn c [x turbo-mode?]

 (library/compute x turbo-mode?))

This works. Our refactoring is now limited to the parts of
our codebase which relied on library/compute being slow.
The cost, however, is high: we’ve added a positional param-
eter which is almost never used. If we ever add more param-
eters, we’ll either have to switch to an option map or start
specifying turbo-mode? everywhere just so we can specify
the new parameter. Any new functions that call b or c will
also pay this tax.

Discontented with this tradeoff, we try something different:

42

Elements of Clojure

(def ^:dynamic *turbo-mode?* true)

(defmacro slowly [& body]

 (̀binding [*turbo-mode?* false]

 ~@body))

(defn a [x]

 (b x))

(defn b [x]

 (c x))

(defn c [x]

 (library/compute x *turbo-mode?*))

This seems even better. Now we only need to wrap some
parts of our codebase in slowly and otherwise leave things
as they are. Future changes to our code aren’t affected either.

After this change, though, things seem a bit flaky. A lengthy
and frustrating investigation reveals that this expression is
the culprit:

Here we map a over a sequence and then make sure it isn’t
empty. Every time values has more than 32 elements,
though, something seems to go wrong. The issue is that our
slowly block returns a lazy sequence, which can be eval-

(slowly

 (let [values’ (map a values)]

 (if (empty? values’)

 (throw

 (IllegalArgumentException.

 “empty input”))

 values’)))

Idioms

43

(slowly

 (let [values’ (map a values)]

 (if (empty? values’)

 (throw

 (IllegalArgumentException.

 “empty input”))

 values’)))

In this expression, we do an empty? check on the input and
return a completely unrealized sequence. This means that a
is always evaluated outside the slowly block, which proba-
bly would have been caught by our tests.

Unfortunately, in the first expression we do an empty?
check on the result, which realizes the first element. Be-
cause values happens to be a chunked-seq, realizing the
first element also realizes the next 31 elements. These el-
ements are evaluated within the slowly scope, but any el-
ements which come afterwards aren’t. Since our tests use
small collections, we only see this failure in production.

Laziness relies on referential transparency, which formal-
ly means that an expression and its result are interchange-
able. We can replace every instance of (+ 1 1) with 2, or
vice versa, without changing the semantics of our code. Of
course, there are situations where this isn’t true:

(let [+ (fn [a b]
 (println "I'm adding" a "and" b)
 (+ a b))]
 (+ 1 1))

(let [+ (fn [a b]
 (println "I'm adding" a "and" b)
 (+ a b))]

 2)

(slowly

 (if (empty? values)

 (throw

 (IllegalArgumentException.

 “empty input”))

 (map a values)))

uated outside of the binding form. This would have been
obvious had the expression looked a little different:

44

Elements of Clojure

Side effects mean that we can’t just focus on what an expres-
sion returns, we also have to think about how it produces
that value. They make the expression referentially opaque.
Referential transparency also requires an expression to al-
ways return the same value, no matter where it’s evaluated.
Dynamic scope breaks this invariant:

(def ^:dynamic *n* 1)

(defn add-n [x]

 (+ x *n*))

We can’t safely replace (add-n 1) with 2, because in a dif-
ferent context it might return something else. Any use of dy-
namic vars and binding suffers from this problem.

Laziness relies on referential transparency, and binding
breaks it. More generally, almost any higher-order function
assumes referential transparency. When we pass a function
as a parameter, how and when it’s invoked is almost always
an implementation detail.

An experienced programmer can, with care, understand
and work within these details. They can avoid laziness or
be sure to always realize lazy sequences within the prop-
er scope. Clojure also provides mechanisms like bound-fn,
which captures the dynamic scope where the function is de-
fined and applies it when it is invoked. But these are easy to
forget, and forgetting can lead to subtle bugs.

Consider a database client library which provides a with-
db macro. In the best case, lazy evaluation might cause us
to make a call to the database where *db* is undefined. But
chunked-seqs might hide the issue until our code has been
running for months and our dataset has had time to grow.
Worse yet, our lazy calls might be invoked not in an undefined
context but within the scope of a different with-db macro, giv-
ing us a chimeric sequence of values without any complaint.

This is why, in our original example, the slowly macro is a
poor design choice. An experienced reader might infer that

Idioms

45

it uses binding, but they can, and will, forget. A less expe-
rienced reader might miss it entirely. Only the writer, at the
time of writing, can safely rely on dynamic scope.

With a small change, all these problems disappear:

(def ^:dynamic *turbo-mode?* true)

(defn a

 ([x]

 (b x))

 ([x turbo-mode?]

 (binding [*turbo-mode?* turbo-mode?]

 (b x))))

(defn b [x]

 (c x))

(defn c [x]

 (library/compute x *turbo-mode?*))

Now the result of a depends only on its parameters. It uses
binding, but that’s safe because we know that c won’t be
invoked lazily. Our slowly macro could be misused by any-
one invoking a, while our internal binding form can only be
misused by someone changing the implementations of b or c.

Dynamic scope allows us to connect pieces of code without
modifying everything in between. It can be a powerful tool
for simplifying the internals of a codebase. It can also be a
useful way to make complex code testable: a binding form
at the top-level of a test, and a dynamic var with a default
value only overriden in the scope of that test, suffers from
none of the issues discussed above. However, any dynamic
var invites re-binding; it may be safer to use with-redefs
instead.

46

Elements of Clojure

If you have mutable state, use an atom
Clojure’s ref and atom constructs solve the same problem
in different ways. Let’s consider the implausible example of
a bank which stores its account balances in memory, in a
single process. We want to implement a transfer! func-
tion which accepts mutable data representing all balances,
transfers money between accounts a and b, and returns a
map with the updated balances for those accounts.

To solve this with refs, we use an account—>balance map
whose values are individual refs containing each account’s
balance:

(defn transfer! [account->balance a b amount]

 (dosync

 {a (-> account->balance

 (get a)

 (alter - amount))

 b (-> account->balance

 (get b)

 (alter + amount))}))

To solve this with atoms, we use an account—>balance
atom which contains an immutable map from account iden-
tifiers to balances:

(defn transfer! [account->balance a b amount]

 (-> account->balance

 (swap!

 #(-> %

 (update a - amount)

 (update b + amount)))

 (select-keys [a b]))

Idioms

47

Clojure’s software transactional memory (STM) implemen-
tation allows us to update separate mutable values atomi-
cally. However, we can accomplish the same result by put-
ting those separate values into a single data structure and
wrapping them in an atom. The difference between these
approaches is the expected throughput.

The swap! function is implemented using a compare-and-
set (CAS) primitive:12

(defn swap! [atom f & args]

 (loop []

 (let [x @atom

 x' (apply f x args)]

 (if (compare-and-set! atom x x')

 x'

 (recur)))))

The compare-and-set! operation allows us to update the
atom only if its value hasn’t changed since we dereferenced
it. If it has changed, we get the latest value and try again. If
there are concurrent transfers between any accounts in the
atom-based transfer! implementation, only one will suc-
ceed and all the others will have to retry.

STM uses a similar approach: update values within a trans-
action, and retry if someone else also did an update during
our transaction. However, we only retry if our specific ref-
erences were touched. In the STM-based transfer! im-
plementation, if there are concurrent transfers between
accounts, we will only retry if the same account is updated
multiple times.

The utilization of a state container is a measure of how often
it is in the process of being updated. In general, we expect to
see retries increase dramatically whenever the utilization

12.
The actual
implementation
is written in Java,
but this is equivalent.

48

Elements of Clojure

is greater than 60%.13 Since the atom-based implementa-
tion has only one container, we will approach that threshold
more quickly.

But even if the atom has lower throughput, it’s almost cer-
tainly enough. Inside our swap! call, we’re just calling
assoc twice, which even on a very slow machine will take
less than a microsecond. Hitting the 60% utilization thresh-
old, then, would require more than 600,000 transfers per
second. If each transfer is triggered by an external request,
getting anywhere near this threshold will require expensive
hardware, a fanatical devotion to efficiency, or both.

So while Clojure’s STM offers better throughput in extreme
scenarios, it rarely offers a practical improvement. Atoms
are simpler and introduce less overhead. In typical situa-
tions with little or no contention, atoms are faster.

Furthermore, STM can be difficult to use correctly. Much
like dynamic scope, transactions break referential trans-
parency. Lazy realization of alter, commute, or ref-set
could happen in the wrong transaction, leading to subtle
errors. The commute function invites other mistakes; in our
original example, we might realize that addition and sub-
traction are commutative and make this change:

(defn transfer! [account->balance a b amount]

 (dosync

 {a (-> account->balance

 (get a)

 (commute - amount))

 b (-> account->balance

 (get b)

 (commute + amount))}))

Since concurrent calls to commute don’t cause retries, this
gives us optimal throughput. However, the return value is
no longer valid; the value returned by commute may dif-

13.
This is simplistic,
but still a very useful
rule of thumb.
It treats the state
container as an
M/D/1 queue, which
has an exponentially
distributed interval
between each update,
and a deterministic
cost for each update.
Neither of these will
ever be exactly true,
but they’re true enough
in most cases. In such
a system, overhead
is proportional to the
square of the service
time; halving the time
for each update will
quarter the number
of retries.

Idioms

49

fer from the one committed at the end of the transaction.
This inconsistency won’t be visible in tests, or even in low
throughput production systems, making it all the more dan-
gerous.

More broadly, transactions make it difficult and expensive
to get a consistent snapshot of our state. In the atom-based
implementation, if we want a snapshot of all balances we
can simply dereference account—>balance. With STM, it’s
a bit more complicated. We can’t, for instance, just do this:

(defn balance-snapshot [account->balance]

 (->> account->balance

 vals

 (map deref)

 (zipmap (keys account->balance))))

Since a transaction can occur midway through, the values
returned will not be consistent. To fix this, we need to make
two changes:

(defn balance-snapshot [account->balance]

 (dosync

 (->> account->balance

 vals

 (map ensure)

 (zipmap (keys account->balance)))))

First, we need to wrap our reads in their own transaction.
Second, since using deref inside a transaction does not
guarantee the values won’t change later in the transaction,
we also need to change deref to ensure to make sure our
values are completely consistent. Unfortunately, this means
that transfers between any accounts may cause our snap-
shot function to retry. Likewise, taking a snapshot may
cause transfers to retry.

50

Elements of Clojure

When Clojure was first announced, much of the focus was
on its state primitives, and specifically its STM implemen-
tation. Years later, it seems clear that the real value derives
from its immutable data structures and that atoms solve
most problems involving state. Agents, which avoid retries
by introducing an unbounded queue, are best avoided. STM
is useful, but only in a narrow set of cases involving write-
heavy workloads that can’t be offloaded to a database.

If you have mutable state, make sure it belongs inside your
process. If it does, try to represent it as a single atom. If that
causes performance issues, try spreading the work across
more processes. If that isn’t possible, see if the atom can be
split into smaller atoms that don’t require shared consisten-
cy. Finally, if that doesn’t help, you should start looking into
Clojure’s STM primitives.

Idioms

51

An explicit do block implies side effects
Any time we ignore the value returned by an expression, a
side effect is occurring. Any function which returns nil ex-
ists solely to perform a side effect. Understanding these side
effects is a crucial part of understanding a codebase. A do
block tells the reader that something important is happening.

Many forms in Clojure, however, contain an implicit do block.
These include the special forms fn, let, and loop, and
macros such as when. Such forms rarely contain side effects
and do not invite the reader to look closely. If there is a side
effect, we must take extra care to get the reader’s attention.

One possible approach is to add a redundant do block:

(let [moon (choose-moon)]

 (do

 (fire-rocket! moon)

 (await-landing moon)))

It’s often simpler, however, to draw attention through the
use of negative space:

(let [moon (choose-moon)]

 (fire-rocket! moon)

 (await-landing moon))

Specifically within let bindings, we can call out inline side
effects by assigning the return value to _:

(let [moon (choose-moon)

 _ (fire-rocket! moon)]

 (await-landing moon))

Any approach is fine, so long as it is used consistently
throughout the codebase.

52

Elements of Clojure

Use the narrowest possible data accessor
Clojure’s data structures have many guises. A vector can be
treated as a map of its indices onto its elements:

> (get [0 1] 1)

1

> (contains? [0 1] 2)

false

A map can be treated as a sequence of “entry” objects, which
themselves can be treated as vectors:

> (map key {:a 1, :b 2})

(:a :b)

> (map first {:a 1, :b 2})

(:a :b)

Similarly, Java List and array objects can be coerced into
a lazy-seq, and every sequence operator in clojure.core
does this implicitly.

> (->> [1 2 3]

 int-array

 (map inc))

(2 3 4)

This allows us to focus on the ways these data structures are
similar, rather than their subtle differences. However, it also
means that there are many paths to the same data transfor-
mation. If we want a sequence of the keys in a map, we can
use the approaches shown above or simply call (keys m).
Often a single codebase will use all three approaches, even
if there’s a single author.

Idioms

53

While these are functionally equivalent, they are very dif-
ferent for the reader. Seeing (map first x) only tells us
that x is a sequence of sequences, while (map key x) im-
plies that x is a sequence of entries; only (keys x) tells us,
definitively, that x is a map.

Less ambiguous names can help, but are not enough on
their own. Naming a map m or a—>b clarifies our intent, but
this clarity must be mirrored within the code itself.

Clojure makes it possible to ignore the differences between
data structures, but that doesn’t mean we should. Often,
these differences matter. By using generic accessors, such
as invoking a collection as a function rather than using get,
nth, or contains?, we strongly imply that they don’t matter.
The subtext of our code should always reflect our intent.

54

Elements of Clojure

Use letfn for mutual recursion
The let form is familiar to any Clojure reader; the name
goes on the left and the evaluated form on the right. For mul-
tiple bindings, it often helps legibility to align our columns:

(let [two (+ 1 1)
 twenty-two (+ 11 11)]

 ...)

This is true for let, loop, and any other macros that pro-
vide lexical bindings. The only outlier, perhaps in the entire
Clojure ecosystem, is letfn:

(letfn [(cube [x] (* x x x))]

 ...)

This encloses the left and right sides of the binding in a sin-
gle form, which is unusual enough that it will cause even ex-
perienced readers to stumble. The above form is equivalent
to this:

(let [cube (fn cube [x] (* x x x))]

 ...)

Note that cube appears twice in the expanded form: first
as the lexical name and second as the name that is shown
in stack traces. The fact that letfn avoids this duplication
doesn’t make up for its structural irregularity. The only real
value of letfn is that it allows out-of-order references be-
tween functions:

(letfn [(a [x] (b x))
 (b [x] (a x))]

 ...)

These functions will endlessly recurse without doing any-
thing useful, but they will compile. Use of letfn should be
confined to cases of mutual recursion and avoided every-
where else.

Idioms

55

Java interop should be obvious
Clojure’s data types are best understood via their innards.
When reading unfamiliar code, our focus is on how the four
fundamental datatypes (maps, sets, vectors, and seqs) have
been nested within each other. This tells us not only what
the data is but how to interact with it.

A Java object, on the other hand, is best understood via its
name. Even if we know what it contains, we can only know
how to interact with it by reading the documentation. This
requires a fundamentally different mindset from the reader.

Fortunately, Java interop looks noticeably different from
normal Clojure code. Unfortunately, this is easily subverted:

(.. (java.util.HashMap.)

 (put :ganymede :jupiter)

 (put :phobos :mars)

 (put :oberon :uranus))

Clojure’s .. macro reduces the amount of punctuation in
our code, but it turns Java interop into something that is
recognized through a form’s context rather than the form
itself. A reader could easily mistake put for a Clojure func-
tion, rather than a Java method. This macro and others like
it come at too high a cost. Unusual code should be allowed
to look unusual.

56

Elements of Clojure

Use for to create cartesian products
In Clojure, transformations are best done piecemeal:

(->> s

 (remove nil?)

 (map :user)

 (group-by :department))

In this expression, steps can easily be added, removed, and
reordered. If we’re especially concerned with performance,
we can use transducers, but this only works for the subset of
supported functions:

(->> s

 (eduction

 (comp

 (remove nil?)

 (map :user)))

 (group-by :department))

Since group-by isn’t implemented as a transducer, we have to
nest the surrounding operations in (eduction (comp ...)).
This obscures our intent, making it harder to think of each
transformation as a separable piece of computation.14

Similarly, the for macro provides a syntax for simple list
comprehensions:

(group-by :department

 (for [record s

 :when record

 :let [user (:user record)]]

 user))

14.
The real value
of transducers is not
performance,
but rather that
non-standard data
representations
like core.async
channels can use
clojure.core
directly rather than
having to define their
own map, filter,
and so on.

Idioms

57

This syntax encompasses simple operations like map and
filter but not more complex operations like group-by.
This means our declarative list comprehension will often sit
awkwardly within a larger chain of transformations.

However, for does have a unique ability:

(for [a [1 2 3]

 b [:a :b :c]]

 [a b])

This will generate every possible combination of a and b,
also known as their cartesian product. Whenever we re-
quire such a thing, we should use for, unadorned by any
:let, :when, or :while clauses.

The declarative nature of for can also be useful when defin-
ing data literals:

[:html

 [:ul

 (for [item todo-items]

 [:li item])]]

Here we define an HTML document containing a to-do list.
The for macro functions like a template, the round brackets
clearly differentiated from the square brackets of the sur-
rounding data literals. Here again, however, we should avoid
special for clauses, as they would only serve to confuse be-
tween data literals and executable expressions.

58

Elements of Clojure

nil should be the absence of only a few values
The nil value is one of the trickiest parts of Clojure, be-
cause it represents an absence. The absence of what, exactly,
depends on the context. For conj, cons, and nth, it is the
absence of a seq:

> (conj nil :callisto)

(:callisto)

> (cons nil :callisto)

(:callisto)

> (nth nil 42)

nil

For count, it is an empty collection:

> (count nil)

0

For assoc and get, it is the absence of a map:

> (assoc nil :callisto 1610)

{:callisto 1610}

> (get nil :callisto :unknown-year-of-discovery)

:unknown-year-of-discovery

For if, it is the absence of truth:

> (if nil

 :true

 :false)

:false

Idioms

59

If we don’t define a default value, nil is the absence of what-
ever we’re looking up:

> (get {} :callisto)

nil

This is important to remember, because Clojure treats any-
thing that isn’t a map as an empty map:

> (get 1 :callisto)

nil

> (get (Object.) :callisto)

nil

As a result, we cannot consider a function that returns nil
in isolation; we have to look at the downstream functions to
make sure they interpret our nil correctly. Consider a map
of keywords onto vectors of numbers:

(def key->numbers

 {:a [1 2 3]

 :b [4 5 6]})

If we look up a nonexistent keyword, we’ll get a nil repre-
senting the absence of a vector. Unfortunately, none of Clo-
jure’s standard functions interpret nil that way.

> (-> key->numbers
 :a
 (conj 8 9 10))
[1 2 3 8 9 10]

> (-> key->numbers
 :c
 (conj 8 9 10))

(10 9 8)

60

Elements of Clojure

To fix this, we must be explicit about our absent values:

> (-> key->numbers

 (:c [])

 (conj 8 9 10))

[8 9 10]

Composing nil-friendly functions can create an explosion
of ambiguity:

(-> solar-system :jupiter :callisto :mass)

Here, nil may represent the absence of the :mass, :cal-
listo, or :jupiter keys, or the absence of the entire so-
lar-system. Sometimes, the differences between these
explanations may not matter; one way or another, we don’t
know the moon’s mass. Explicitly representing each case in
our code is needlessly verbose:

(if solar-system

 (if-some [jupiter (:jupiter solar-system)]

 (if-some [callisto (:callisto jupiter)]

 (if-some [mass (:mass callisto)]

 mass

 nil)

 nil)

 nil)

 nil)

If we simply pass along an ambiguous nil, however, the am-
biguity will grow, and the first peson bit by a NullPoint-
erException will have to walk backward through the code,
testing each hypothesis in turn. Ambiguity makes our code
more concise, but unbounded ambiguity makes it impossi-
ble to reason about. To protect ourselves, we must interpret
nil at regular intervals throughout our code.

Idioms

61

This conflates the meanings of nil within our expression
but separates it from the meanings of nil everywhere else.
Treating mass as a number-or-keyword datatype is inele-
gant, but so is number-or-nil; the keyword, at least, is harder
to ignore or misinterpret.

This means that effective Clojure should avoid this all-too-
common idiom:

(defn some-function [x & args]

 (when x

 ...))

Wrapping a function in a when clause simply passes the
buck, making nil someone else’s problem. If nil can be
coerced to an empty collection, we should do that. If not, we
should throw an error. Anything else sows needless confu-
sion.

(-> solar-system :jupiter :callisto (:mass :mass-not-found))

Names

Composition

Indirection

Idioms

64

Elements of Clojure

Indirection
Indirection provides separation between what and how. It
exists wherever “how does this work?” is best answered, “it
depends.” This separation is useful when the underlying
implementation is complicated or subject to change. It gives
us the freedom to change incidental details in our software
while maintaining its essential qualities. It also defines the
layers of our software; indirection invites the reader to stop
and explore no further. It tells us when we’re allowed to be
incurious.

There are two fundamental tools for indirection: refer-
ences and conditionals. A reference is a value that points
to another value, its referent. Getting the referent is called
dereferencing. A name is a lexical reference that is derefer-
enced at compile time. A pointer is a memory reference that
is dereferenced at runtime.

In both cases, it is possible for a reference to point to noth-
ing. In the case of names, this will cause a compile error. In
the case of a pointer, we represent “nothing” with the nil
value, which has been known to cause runtime errors.

Any function that takes non-primitive values uses referenc-
es. The behavior of filter, for instance, depends on refer-
ences to both a predicate function and a sequence. These
values are implicitly dereferenced, unlike Clojure’s concur-
rency primitives, which require explicit dereferencing.

A conditional is any expression that uses an if or case form,
making its behavior dependent on the input values. This is
necessary when only a subset of possible values is valid or,
more generally, when different subsets of possible values
have different semantics.

We can see both of these in the semantics of Clojure’s nth
function, which is partially reproduced here:

Indirection

65

(defn nth [x idx]

 (cond

 (string? x) (.charAt ^String x idx)

 (instance? List x) (.get ^List x idx)

 ...))

In this function, the value of idx is an arbitrary integer val-
ue, but only values within [0, size) are valid. The value of
x can be any reference type, but only a fixed set of collection
types is valid. For each of these collection types, the lookup
method is different. Conditionals can be used to segment
behavior for a given type, unify behavior across many types,
or both.

A reference conveys values, and a conditional decides based
upon values. These are complementary primitives and are
present in every modern language. Through their composi-
tion, we can create software of arbitrary complexity.

The importance of these primitives is reflected in modern
computer hardware. Memory indirection requires costly
lookups in main memory, and so we created a hierarchy of
caches, each smaller and faster than the one above. Con-
ditional jump operations prevent the pipelined execution
of instructions, and so we introduced branch prediction.
Enormous effort has been poured into these optimizations
because we can’t live without indirection. All we can try to
do is minimize its cost.

These primitives differ in how we change their behavior. A
reference is open; we can change the behavior of the deref-
erencing code by conveying different values. Conversely, a
conditional is closed; we can only change its decision pro-
cess by changing the underlying code.

It’s tempting to say that we can create an “open” conditional
by putting all the predicates and clauses into a data struc-
ture. Using this approach, we can modify the decision pro-
cess simply by changing the data. Since any nontrivial data

66

Elements of Clojure

structure uses both references and conditionals, we might
expect it to inherit the best qualities of each.

However, one of the fundamental properties of conditional
code is that it is ordered. The behaviors of these two cond
expressions are very different:

(cond

 (<= 0 n 10) ...

 (<= 5 n 15) ...)

(cond

 (<= 5 n 15) ...

 (<= 0 n 10) ...)

In the first expression, we describe one behavior for inputs
in [0, 10] and another behavior for inputs in [11, 15]. In
the second expression we describe one behavior for inputs
in [5, 15] and another behavior for inputs in [0, 4]. If our
predicates aren’t disjoint, order matters.

The predicates in our hypothetical data structure may over-
lap. That means the order in which we evaluate them mat-
ters, and that order is described by the code that populates
our data structure. Our decision process is still closed; all
we’ve done is change where the specification lives.

For a decision-making mechanism to be open, it must be
unordered. Typically this is implemented using a data
structure with a distinct set of keys, which we will refer to
as a table.

For a table to be useful, it must avoid conflicts. One way to
accomplish this is to keep the table private so it reflects only
our vision of how keys map onto behavior. Alternatively, we
can extend the table using only private keys so no one else
can shadow our behavior.

Indirection

67

Failure to do either will land us in a situation similar to Ruby,
where libraries sometimes make conflicting monkey-patches to
fundamental datatypes, each trying to satisfy their own narrow
use case. The errors that arise from this are often subtle and dif-
ficult to track down.

Conditionals solve conflicts by making an explicit, fixed decision.
Where conflicts are possible, we use conditionals because they are
closed.

68

Elements of Clojure

Method Dispatch
Method dispatch allows us to associate a single method with
one of many implementations. If the association occurs at
compile time, it is called static dispatch. If the association
occurs at runtime, it is called dynamic dispatch.

All of Clojure’s dispatch mechanisms – interfaces, protocols,
and multimethods – are implemented using tables. All of
them are open, but to different degrees. In general, their ef-
ficiency is inversely proportional to their openness.

Interfaces dispatch on the class of the object. Any class may
implement an interface, but the implementation must be
defined within that class. This means that conflicts are im-
possible; the association, if any, between an interface and
a class can only be decided by the author of the class. This
also means that static dispatch is possible, as long as we in-
voke using the concrete type rather than the interface.

Protocols also dispatch on the class of the object, but anyone
may define a relationship between a protocol and a class.
This means that static dispatch is impossible, and under-
standing that relationship may require reading the entire
codebase. It also means that if both a protocol and class are
publicly visible, we risk defining conflicting extensions. In
practice, when extending a protocol over a class, either the
class or protocol should be a hidden implementation detail.
This avoids conflicts and means we only need to examine
the code near the hidden class or protocol to understand the
relationship.

Multimethods dispatch on a key derived from all arguments
to the function. This is much more flexible than either in-
terfaces or protocols, at the cost of some performance. As
with protocols, we must take care to avoid defining relation-
ships between multimethods and keys that are both public-
ly visible. For instance, Clojure’s print-method allows us to
change the behavior of prn for any type. If we were to do this
for a common class, like clojure.lang.PersistentVec-
tor, it could be disastrous.

Indirection

69

When using Clojure’s hierarchy mechanism, it’s possible to
define multimethod keys with overlapping scopes. This can
be resolved using prefer-method, but this is a closed deci-
sion process that can be defined and overridden anywhere
in the codebase. The complexity and risks introduced by hi-
erarchies are rarely worthwhile.

We’re forced to worry about collisions when using proto-
cols and multimethods because both rely on shared global
state. This allows us to incrementally define dispatch be-
havior and saves us from having to thread the dispatch table
through all of our function calls. This is usually a worthwhile
tradeoff, but when it’s not, we’re forced to try something else.

In the most trivial case, we can define a class—>method—>impl
data structure and define an invocation helper:

Then we can define functions that expect the dispatch table
as a parameter and use our invoke macro rather than stan-
dard invocation.15 This is ungainly but much more flexible;
we can freely change dispatch behavior within a local scope
without affecting the rest of our code. We can even create
higher-order abstractions to describe these local changes.
This approach is rarely necessary, but we should never for-
get that it is within reach.

(defmacro invoke

 [class->method->impl x method & args]

 (̀(get-in ~class->method->impl [(class ~x) ~method])

 ~x

 ~@args))

15.
We can’t avoid
the explicit parameter
by using dynamic
scope because
it wouldn’t be
compatible with lazy
evaluation.

70

Elements of Clojure

What is an Abstraction?
Indirection is a mechanism for creating abstractions, which
is a word we’ve carefully avoided until now. To explain why,
we’ll look at two concepts that are fundamental parts of Clo-
jure’s lineage: the cons cell and Church numerals.

In its most common usage, the cons cell represents a list. It
contains two values, the first representing an element and the
second representing a reference to the next cell. By creating
a new cell which references a list, we effectively prepend to it.

A Church numeral represents the natural numbers through
function composition. The number n is a function which takes
a value and a function f, and applies f to the value n times. By
composing a “successor” function with an existing numeral,
we effectively increment it.

These concepts have a structural similarity: they accumu-
late through creating references to a previous value. However,
while the cons cell has seen widespread use in software, the
Church numeral has only been used in mathematical proofs.
This is because the cons cell is a practical model for repre-
senting lists in memory, while Church numerals are a deeply
impractical model when compared to a binary representation.

Of course, this isn’t a fair criticism of Church numerals; they
were never meant to be an actual method for performing
arithmetic. They were designed to be a useful tool for mathe-
matical proofs, and in this they were successful. They are, in
a sense, timeless.

But the cons cell is not timeless; since its invention in the late
1950s, computers have changed. Notably, processor speed
has improved more than memory latency, and so the relative
cost of following a reference has grown over time. For this rea-
son, Clojure favors data structures which represent lists using
32-element blocks, such as vectors and chunked-seqs.16

Both the cons cell and the Church numeral would commonly
be called abstractions. They both fit our informal definition:
they are conceptual tools built using indirection. However,

16.
The only meaningful
exception to this rule is
Clojure’s syntax trees,
which are small and
rarely processed at
runtime.

Indirection

71

one is meant to run on a physical machine, and the other is
not. One is judged with respect to a changing context, and the
other is not.

A common formal definition of abstraction comes from C.A.R.
Hoare’s paper Proof of Correctness of Data Representation, pub-
lished in 1972. Hoare distinguishes between a data struc-
ture’s concrete representation, which is its internal model,
and its abstract representation, which is the interface it ex-
poses. In his terminology, mapping the concrete representa-
tion onto its abstract representation is done via an abstraction
function.

Consider a data structure that represents an integer set and
provides add and contains? methods. In this case, we could
implement it as a simple list of integers, where contains?
scans the list to see if it can find the number and add appends
it to the end of the list. This is a bit wasteful since the list may
contain duplicate numbers, but it works.

This approach is less acceptable if we need to implement a
remove method. Ideally, we’d like to search for the first in-
stance of a number and, if it’s found, remove it. However, in
the above approach we’ll need to scan the entire list every
time because there might be duplicates. To simplify, we de-
cide that add will only append the number if it’s not already
in our list.

Now our model is not just a list of integers; it’s a list of unique
integers. This is trivially true for an initial empty list and will
remain true after each invocation of add or remove. Hoare
calls this an invariant relation on the concrete representation.
To determine if a method is correct, we only need to consider
the model and its invariants. As long as add enforces the in-
variant, its implementation doesn’t affect remove.

We are also able to change the model without affecting the ab-
stract behavior of the data structure. If we decide that our list
should be sorted, add and remove will have to be changed to
enforce this new invariant, but the semantics of our interface
will remain the same.

72

Elements of Clojure

Hoare’s paper, as the title suggests, is concerned with con-
structing proofs. As we saw with the Church numeral, proofs
lack context; they are only concerned with being self-consis-
tent. Likewise, Hoare’s terminology describes the abstrac-
tion’s interface and its internals, but it doesn’t acknowledge
that the abstraction exists within an environment.

This is not a small omission. Consider that the mechanical
clock existed for centuries before we devised one which could
keep accurate time aboard a ship. This wasn’t for lack of try-
ing; keeping accurate time allowed determining the ship’s
longitude, and many lives and fortunes were lost to poor navi-
gation. The ocean happens to be a very difficult environment:
it constantly moves, temperatures fluctuate wildly, and grav-
ity is 0.5% stronger at the poles than the equator.

An early mechanical clock was at the mercy of its environ-
ment. It had to sit on a flat surface and couldn’t be rocked,
shaken, or dropped. It had to be regularly wound. The tem-
perature couldn’t change too much or too quickly. These were
not invariants, because the clock couldn’t enforce them. They
were assumptions.

Hoare’s abstraction function, like the Church numeral, is a
mathematical abstraction. It describes a model which has
provable qualities and is often described as “correct,” which
means it is self-consistent. By omission, it deems the context
unimportant.

In software, we don’t have the luxury of ignoring context. We
need our models to be self-consistent, but we also need them
to be useful within our given environment. There are count-
less resources for creating self-consistent abstractions, but
few for creating useful abstractions. This is in part because
self-consistency is an objective property, while utility is
hopelessly subjective.17

Self-consistency is necessary, but not sufficient. When eval-
uating software, we cannot ignore the broader context. We
must take advantage of every available perspective. We must
be dissatisfied with easy answers. We must be curious.

17.
There is an
unfortunate tendency
to treat proof that
software is “correct”
as proof that it is
useful. The term
“self-consistent”
is preferable because
it clearly suggests
that we are ignoring
a broader context.

Indirection

73

Most software abstractions take the form of a module, which
consists of a model, an interface, and an environment.

The model is a collection of data and functions. The inter-
face is the means by which the model and environment in-
teract. The environment is everything else: other software
components, the users, and the world they exist in.

Models reflect specific facets of their environment. They
narrow our attention, giving us the ability to reason about
something that is endlessly complex and to change it in pre-
dictable ways. Everything the model does not reflect rep-
resents an assumption that these missing facets are either
fixed or irrelevant. If a model can represent invalid states, it
must enforce invariants that preclude those states.

In the context of our mechanical clock, the model is the in-
ner clockwork, which enforces an invariant relationship be-
tween the passage of time and the turning of its gears. The
interface is the clock’s hands and dial, as well as the wind-
ing mechanism. The clock assumes that it will be regular-
ly wound and that the clockwork won’t be subjected to any
forces that prevent it from doing its job. If those assump-
tions are false in our particular context, then the clock is no
longer a useful tool for telling time.

A Model for Modules

Environment

Interface

Model

74

Elements of Clojure

Models
When we discuss models, we often turn to physics. The tran-
sitions from Ptolemy’s epicycles to Kepler’s ellipses, from
Aristotelian to Newtonian mechanics, and from the hodge-
podge of laws about electricity and magnetism to Maxwell’s
equations, are shining examples of how better models can
be transformative. They sweep away something crumbling
under the weight of exceptions and bolted-on fixes, replac-
ing it with something simple and clean.

Physics, like all natural sciences, aspires to reason deduc-
tively about the world. Deduction maps the environment
into the model and then uses the model to infer new facts
about the environment. In physics, we observe the world in
order to predict what comes next.

In formal deductive reasoning, our conclusions are neces-
sary; if they’re wrong, it’s only because our initial assump-
tions were wrong. By this measure, physics falls short. New-
ton’s mechanics can’t predict the orbit of Mercury, and it’s
not because we’re using the wrong gravitational constant.
The mechanics themselves are flawed.

Physics is not, in the strictest sense, deductive. It may never
be. But physicists will never stop trying.18

Many early computer scientists were trained as physicists,
and it shows. When building systems that interacted with the
world, they leaned heavily on this deductive approach. The

“General Problem Solver” was a software agent created in 1959
that tried to solve every problem via “means-end analysis.” It
would observe the current state, compare it to the desired out-
come, and search for a path between the two by simulating
intermediate actions. Having found a path, it would then act.

The General Problem Solver was not successful, but similar
approaches were tried on successively more powerful ma-
chines until the late 1980s, when the AI Winter more or less
snuffed out that line of research. Since then, practical use
of software has exploded, and deductive models have given
way to inductive ones.

18.
Many flawed theories,
like Newton’s
mechanics, can still
be useful in an
engineering context.
However, this is just
a pleasant side effect
of physics research,
not its purpose.

Indirection

75

Inductive reasoning is, in effect, reasoning by analogy. If
two objects occupy the same point within our model, we can
observe one to draw conclusions about the other. If rocks
and phones look the same within our model, and a rock falls
to the ground when it’s dropped, we can reasonably assume
our phone will too.

The conclusions we draw from inductive reasoning are con-
tingent; they’re allowed to be wrong. Inductive models are
more resilient than their deductive counterparts. Consider
a simplistic deductive approach to our dropped phone:

• Our phone is an object.

• All dropped objects fall.

• Therefore, if we drop our phone, it will fall.

This takes a narrow observation, applies rules, and yields a
conclusion. The conclusion is reasonable unless we happen
to be in an accelerating vehicle, in free-fall, or in any other
situation where gravity is not the dominant force. To handle
those cases, we’d need to increase the breadth of our obser-
vations and the complexity of our rules.

Contrast this with an inductive approach: our phone will do
whatever a rock will do. This is both simpler and more ro-
bust, but it comes at a cost: we must continuously observe
the behavior of our rock. We can never retreat into our own
minds.

Empirically, this is a price worth paying; induction is used
by every living organism. Consider how the world is seen by
a tick.

A tick’s decision to try to latch onto a passing animal is based
on the presence of heat and butyric acid, found in sweat. If
there are sufficient quantities of both, it reflexively makes
an attempt.

The tick’s model of its environment cannot guarantee a
consistent outcome. For any given values of heat and sweat,
there are scenarios that lead to success and scenarios that

76

Elements of Clojure

lead to failure. Nevertheless, the tick survives; its simplistic
model satisfices.19 It may not be optimal, but it works well
enough in practice.

Where the Solver tried to predict, the tick only compares. The
tick is not a brain in a jar; we can only understand it with-
in its environment. The same is true of every living organ-
ism, including humans. Our internal models may be more
sophisticated than a tick’s, but they’re still far from deduc-
tive.20

Likewise, real-world software models don’t attempt to pre-
dict, only compare. A login process does not verify a per-
son’s identity; it only compares the username and password
(or some hash thereof) to what’s stored within the model.
Two people who know that username and password are
equivalent within our model; they are effectively the same
person. This is a reasonable assumption in some situations,
and dangerous in others. In order to judge any model, we
must first define its environment.

It’s easy to create a deductive model: simply reduce every-
thing to arithmetic or first-order logic. What’s difficult is to
create a deductive model that is useful. Fred Brook’s famous
observation that “nine women can’t make a baby in one
month” is a refutation of a model that is simple, deductive,
and wrong. Distrust any abstraction that touches the real
world and touts its own logical simplicity.

This is not to say that deductive models are worthless; rules
engines and Prolog-like mechanisms can be used to good
effect in certain domains. However, these models do not be-
long at the periphery of our systems, and we must not mis-
take their self-consistency for more than it is.

The models of mathematics don’t acknowledge their envi-
ronment. We can use them to judge whether our software
is self-consistent, but not whether it is useful. The models
of physics are built atop deductive mechanisms, and aspire
towards perfection. The models of software are built atop
inductive analogies and aspire only to satisfice.

19.
This term comes
from Herbert Simon’s
book Sciences of the
Artificial, which
is a seminal book
on design. Curiously,
Simon was also one
of the creators of
the General Problem
Solver. When reading
the book, and similar
works from the dawn
of computing, one
must take care to
separate the logical
positivism that birthed
the Solver from the
pragmatism that led to
satisfice being coined.

20.
Philip Agre’s
Computation and
Human Experience
provides a more
detailed critique
of the assumptions
underlying the General
Problem Solver and
their prevalence in
the AI community over
the following decades.

Indirection

77

Invariants
Invariants are required when a model can represent inval-
id values. Typically, this term describes enforcement of the
self-consistency of our models. In our earlier example, the
integer set had to ensure that its array is always in sorted
order or it wouldn’t work properly.

But there is a broader sense to this term, which concerns
how the model relates to its environment. We only want our
model to represent values that can be found in the environ-
ment. For instance, if we store a user’s email address as a
bare string, countless possible values are not valid address-
es: they might be empty, lack an @ symbol, or contain the
collected works of Shakespeare.

Adding regex validation narrows the possible values in our
model, but only to strings that superficially resemble email
addresses. To validate the address we have to reach outside
our process, which makes things considerably harder. We
can enforce restrictions on our own model, but we can’t en-
force a fixed relationship between our model and environ-
ment.

We can add a confirmation step to our user registration pro-
cess, where users are required to acknowledge receipt of a
message before we accept their email address as valid. But
even then, the email server may go out of service, the ac-
count might be stolen, or the user might forget their pass-
word. No one will tell us when the environment drifts away
from our model.

At the risk of annoying our users, we can periodically reval-
idate our model by asking, “is this the best way to contact
you?” This only mitigates the problem, but mitigation is the
best we can hope for. We must understand how drift be-
tween our model and environment can affect us and make
sure we avoid the worst of it.

78

Elements of Clojure

Assumptions
Everything a model omits represents an assumption about
the environment: these unrepresented facets are either
fixed or irrelevant. A mechanical clock may assume that it
will sit on a flat surface, give or take a few degrees. All clocks
assume, by omission, that the motion of Jupiter’s moons
won’t affect them.

It’s easy to imagine a failure of the former assumption; the
clock might be knocked over or placed on a crooked shelf.
It’s difficult, however, to imagine how the latter assumption
would ever fail. Practical models are small and therefore
come with an enormous number of assumptions, most of
which are completely sound.

The trick, then, is to know which assumptions are worth our
attention. We care about assumptions that are invalid or are
likely to become so. Judging whether a model is useful in a
given environment requires understanding how that envi-
ronment can change.

We can reduce the burden of fragile assumptions by layer-
ing modules with complementary invariants and assump-
tions. For instance, our mechanical clock assumes a flat
surface, and a gyroscopic platform provides a flat surface in
all environments. If we put the clock atop that platform, the
assumption is no longer our concern.

Broad assumptions mean smaller models, which means
simpler code. If we keep modules with similar assumptions
grouped together, we can wrap them in a single layer that
enforces those assumptions. Abstractions that fail together
should stay together.

In some cases this is easy: if a collection isn’t thread-safe,
we can wrap all access to that collection in a mutex. Like-
wise, input validation can be performed once at the outer-
most layers of our software. However, almost all software
assumes that memory allocations won’t fail, and the JVM
won’t let us enforce that assumption.

Indirection

79

Conventions
If an assumption isn’t hidden away by an abstraction layer,
it becomes our responsibility to enforce it. Our software’s
assumption that it can always allocate memory is false un-
less we make the heap large enough. A mutable data struc-
ture’s assumption that it has a single owner is false unless
we structure our code to ensure it.

These flawed assumptions at the edges of our software are
what make abstractions “leaky.” Often, the flaw is that we
expect too much of our users. The C++ language assumes
that programmers can consistently free allocated memory
once they’re done with it, which hasn’t proven true. We can
hide away this flawed assumption by adding garbage collec-
tion to our runtime, but that comes at a cost some are not
willing to pay. Instead, C++ relies on a convention known
as “resource allocation is initialization” (RAII) that makes it
much harder to write code that leaks memory. Likewise, the
second chapter of this book describes conventions that help
us satisfy the assumptions Clojure drops in our laps.

Even where conventions are required, grouping modules
by assumption can be useful. It allows us to more easily re-
member what conventions are required where.

Conventions are fallible. We sometimes use them because
an additional layer of abstraction is too expensive, either
to build or to execute. More often, though, we use them be-
cause our assumptions are flawed, and we don’t know how
to automatically enforce them. Conventions are a useful tool,
but they’re not a solution. We should always aspire for some-
thing better.

Interfaces
The interface is the means by which the model and envi-
ronment interact. This encompasses the formal interfaces,
such as those defined with defprotocol, but also any ef-
fects or shared state. Uses of stdout and stdin, log files,

80

Elements of Clojure

shared atoms, and network requests are all ways that a
model can change, or be changed by, its environment.

The interface describes the sense of a module; it encom-
passes what the model is and also what we expect it to be-
come. As a result, interfaces change much more slowly than
models and almost always grow over time. It’s far easier to
add a method than to take it away.

We should keep our interfaces, like our names, narrow.
They should reflect the fundamental qualities of our model
and hide away everything else.

Environments
The environment is everything that is not the model and
interface. Our model does not attempt to define further
boundaries. It does not draw distinctions between software
and users, or users and the moons of Jupiter. The environ-
ment is just a large, homogenous “everything else.”

If we applied our model to itself, we’d have to conclude that
it assumes these distinctions are irrelevant. This is clearly
a bad assumption; for any given model, small facets of the
environment are critically important, and the rest are not.
To use this model to analyze whether a module is useful, we
must draw a line around the things in the environment that
are worth paying attention to. This must be done on a case-
by-case basis by someone with domain expertise.

That same underdefined quality, however, is what makes
this model useful for inductive reasoning. Few modules
care about the same environmental facets, but all modules
have a model, interface, and environment. This is true for
software, architecture, biology, urban planning, and a host
of other fields.

Computer science has been grappling with the problem of
abstraction for half a century. Other academic traditions
have been grappling with it for millennia. This model allows
us to map their insights into our domain.

Indirection

81

Consequences of our Model
Our goal is to write better modules. At the very least, this
means we have to be able to judge whether a given module is
useful. If a module isn’t useful, we have to decide what steps
to take.

While our definition of “module” doesn’t directly address ei-
ther of these, it does lead to some obvious conclusions.

To abstract is to treat things which are different as equivalent
If a tree loses a leaf, we consider it the same tree. This is
because our mental model of that tree does not enumer-
ate every leaf; the world may have changed, but our model
remains the same. Our understanding of the tree remains
valid. If we find a second tree that looks identical within our
model, we can apply our understanding of that first tree to
the second. By ignoring parts of the world, we can use our
existing knowledge in novel situations. This is the essence
of inductive reasoning.

In his short story Funes the Memorious, Jorge Luis Borges de-
scribes a man whose memory is so lossless that he can only
recall the past by reliving it, moment by moment. Seeing a
dog from two different angles, he cannot find any connec-
tion; they are both just collections of endless details, differ-
ent in every way. The narrator claims that Funes is not really
thinking, only remembering:

To think is to forget a difference, to generalize, to abstract.
In the overly replete world of Funes there were nothing but
details, almost contiguous details.

By including a facet in our model, we are saying a change
to that facet invalidates our past understanding. If we’re
selling tickets to sporting events, our database will focus on
the details of the venue, but largely ignore the players them-
selves. If we’re trying to predict the outcome of a game, on
the other hand, even a single player being injured will force
us to reconsider everything; it has become a different team.

82

Elements of Clojure

Inductive reasoning is about deciding which differences we
choose to acknowledge. If plausible changes to some facet
will alter our model’s identity, we must include it. If not, we
should spend our finite mental resources elsewhere.

Models reflect our perception of their environment
There is no objective measure of the importance of a given
facet. Our choice to include one facet, and exclude another,
reflects the subjective importance we ascribe to each. The
model cannot help but reflect its environment; it has no oth-
er source of information.21 By curating what it can and can-
not reflect, however, we can distort the environment into
something unrecognizable.

A module is useful only if its assumptions are sound
By ignoring, we assume. If our module constructs SQL state-
ments using bare strings from its environment, it ignores
the possibility of malicious strings and thus implicitly as-
sumes they won’t occur. If it is wrapped in another mod-
ule which escapes or otherwise validates the strings, this
assumption is enforced. If not, then we must hope that our
users are, by convention, virtuous. For an internal tool, this
might be a sound assumption, but in most cases it is not.

When judging our assumptions, we must consider not only
what our environment is, but what it is likely to become.
Most disagreements about software are, at their root, dis-
agreements about its present and future environments.
When we say software is “over-engineered,” we mean that
it has too few assumptions; the same effect could have been
accomplished with less effort. This means we believe our
present environment is narrower than the one assumed by
the software and will remain so in the near future. Over-en-
gineering is not a property of our software, but of how we
intend to use it.

21.
This is only true if
we carefully interpret
each facet’s meaning.
If we ask our users if
they can fly, we cannot
take their response at
face value.
We might call the
field can-fly?, but
it really only reflects
their willingness to
claim they can.

Indirection

83

To judge whether our module is useful, we must first de-
scribe the environment as it is and as it will be. Every con-
versation about software can be made more productive by
describing, up front, our subjective understanding of its en-
vironment.

To know a module’s assumptions, we must know its model
Our model and assumptions are duals of each other; know-
ing one allows us to infer the other. To understand a module
is to know its assumptions. If we cannot understand a mod-
ule, we cannot know when its assumptions are false. We are
forced to use it timidly, confining ourselves to well-worn use
cases. Exploration represents an unknowable risk.

This can be an argument against adopting new technology;
knowing your software will fail in a given context is bet-
ter than blindly hoping it won’t. Even so, we are constantly
drawn to software we don’t know well enough to dislike. We
see its capabilities, free of any obvious shortcomings, and
wish to possess them.

This fixation on possession is centuries old. Arthur alone is
able to possess the sword in the stone, and thus is “rightwise
king born of all England.” Arthur, we’re told, holds the sword
because he has the qualities of a king: he is wise and regal
and from the proper bloodline. But these qualities are large-
ly subjective, and possession is objective. In effect, holding
the sword confers these qualities onto Arthur.22

A similar pattern can be seen in the myth of the philoso-
pher’s stone. Representing the highest achievement for any
alchemist, it had the power to transmute base metals into
gold, heal any illness, and extend life. While for some it was
just a metaphor for mastery of alchemy, for most it was a
physical object. It was reportedly red and heavier than gold.
It could be created and passed from master to pupil. It could
be lost and found by some random passer-by. It could be
possessed, and used, without being understood.

22.
These sorts of
symbolic inversions
are further explored
in Jean Baudrillard’s
Simulacra and
Simulation.

84

Elements of Clojure

Confidence requires understanding. If we cannot under-
stand our software, it becomes oracular; we may trust or
distrust it, but in either case, we do so blindly. We wrap
oracles around anything deemed too complex to explain.
Oracles deliver our search results and news feeds. Modern
machine learning techniques generate oracles.23 We can
possess oracles, but we can never understand them. They
turn us all into perpetual novices.

A module cannot prevent itself from being misused
By putting our clock on a gyroscopic platform, we only trade
one failure mode for another. The only way we can avoid
failure altogether is to know a module’s assumptions, and
anticipate when they might become a problem. We cannot
solve this through further abstraction, and so we must ad-
here to a convention: only use a module when it is useful.

Unfortunately, it can be very difficult to anticipate failure.
Understanding the implementation of our software isn’t
enough; we have to know what its environment might throw
at it.24 Often, this is learned through experience; the easiest
way to know that a failure mode exists is to see it happen.
Our job is not simply to understand how software is imple-
mented but to understand the consequences of that imple-
mentation.

If a model ignores too much, we can grow our model, re-
place our model, or narrow its intended use
If we cannot safely ignore a facet of our environment, the
most obvious solution is to stop ignoring it. We can do this
by either adding that facet to our existing model or by recre-
ating the model from scratch.

Alternatively, we can continue to ignore that facet and shift
the blame onto the user: our module was never meant to
be used in that sort of environment. Our clock was never
meant to be put on a ship. Our teletype emulator was nev-

23.
Techniques for
supervised machine
learning are a means
of automatically
generating inductive
models.
We describe which
inputs should coincide
within the model,
and the algorithm
determines what the
model needs to ignore
to accomplish this.
These models are
typically opaque
and thus oracular.
We can describe their
past behavior but not
their assumptions or
the resulting failure
modes.

24.
The “seniority”
of an engineer derives
more from their ability
to predict adverse
environments than
from mastery of any
particular technology.

Indirection

85

25.
This process, called
“chunking”, is
described further in
George A. Miller’s
seminal paper The
Magical Number
Seven, Plus or Minus
Two.

er meant to display emoji characters. Our application was
never meant to be used by people with more than 32 letters
in their surname. In the language of the lean startup, this is
known as “firing your customer.”

Models are useful because they’re small
Over time, models grow. Sometimes we call this adding a
feature, other times fixing a bug. In either case, the effect is
the same: the model reflects more and more of its environ-
ment. This reduces its assumptions, making it more robust,
but also makes it harder to understand.

In his story On Exactitude in Science, Borges describes a guild
of cartographers that creates a 1:1 scale map, which is sim-
ply draped over the kingdom:

The following Generations, who were not so fond of the
Study of Cartography as their Forebears had been, saw
that that vast map was Useless, and not without some Pi-
tilessness was it, that they delivered it up to the Inclemen-
cies of Sun and Winters.

If we can’t fit a model in our head, it has little value. This lim-
it is more a property of our understanding of a model than of
the model itself; as we internalize the model, individual fac-
ets coalesce into larger, more manageable concepts.25 For
individuals, or even small teams, a growing model doesn’t
present a problem as long as their understanding grows
along with it. It is the model’s rate of growth that must be
managed, rather than its absolute size.

If we want to teach our model to someone else, however, we
must consider its absolute size. Knowing that a model can
be comprehended by experts tells us nothing; every model
ever created seemed tractable to someone. What matters is
whether it can be comprehended by anyone else. If not, we
should consider throwing it away.

86

Elements of Clojure

Starting from scratch is costly
When solving a problem with software, few people begin
by designing their own silicon, operating system, and pro-
gramming language. We avoid reinventing the accreted lay-
ers of hardware and software even though they are, for our
purposes, over-engineered; they make fewer assumptions
than necessary.

These legacy solutions have grown by accretion, making
them a reflection of everything they’ve been used to accom-
plish, even the things that are no longer relevant. For any
specific problem they are too general and too distracted by
the past.

And yet, in almost every case we continue to use them. This
is because the inefficiencies and unnecessary complexity
are a reasonable price to pay for not having to build it our-
selves. And unless we are very certain our problem will nev-
er change, the generality of these underlying layers makes
our software more robust to change.

When replacing software, we should only cut away what we
can no longer use.

If a module makes unrealistic assumptions, users can
wrap it, create conventions around its use, or discard it
If our clock must be kept level, our users can put it on a gy-
roscopic platform, never move it from their mantlepiece,
or look for another clock. Each of these may be reasonable
reactions, but neither the platform nor the mantlepiece are
universal solutions. We can make a clock with fragile as-
sumptions because there are many clocks out there, with
assumptions and failure modes that are complementary to
ours. If we don’t solve a user’s problem, someone else will.

Indirection

87

If a module cannot be discarded, it may destroy what it
doesn’t reflect
Sometimes an abstraction cannot be easily replaced.

In rural France, before the rule of Napoleon, land ownership
was a complex affair. Common pastures were shared within
a village, or between villages, according to need. The fruit
on a tree belonged to whichever family planted it, regardless
of who owned the land. Fruit fallen from the tree belonged to
whoever gathered it. If a tree was felled, the trunk belonged
to the family, the branches to their neighbors, and the leaves
and twigs to whoever gathered them. Where boundaries
existed, they would be regularly adjusted in response to
changing circumstances. Where rules were fixed, their ex-
act nature would vary from village to village.

While perfectly clear to each villager, this situation was a
cacophonous mess for the government officials. They could
only tax what they could measure, and the rural model of
ownership defied easy measurement. Their solution was
simple: they sent in the surveyors, who drew maps assign-
ing a single owner to each parcel of land, and a year later the
tax collectors came calling.

As a result, ownership within these villages became more
rigid. If the map said a family owned a parcel of land, they
paid taxes on it, which made sharing the land an expensive
proposition. By basing taxation on a simplistic model, the
French government forced their citizens to conform to that
model.26

Mandatory abstractions are coercive; if the environment
doesn’t fit their assumptions, we’re forced to create an en-
vironment that does. These assumptions shape the lives of
the people who use them, and in time they begin to feel ob-
vious, just a natural reflection of how things are meant to be.
Slowly, they fade from view.

Any software chosen for us is coercive. Enterprise soft-
ware is sold to one person and used by many others. If the
software makes unrealistic assumptions, the users cannot

26.
Many other examples
of this phenomenon
can be found in James
L. Scott’s Seeing Like
a State.

88

Elements of Clojure

easily replace it. They are forced to shape themselves to its
needs. As creators of software, we cannot afford to ignore
the impact our models have on their environment.

Software would be easy if things never changed
Software must change with its environment. If it doesn’t, it
will eventually become useless. This can only be avoided
by choosing an environment that is naturally stable or by
simulating stability by wrapping our software in further ab-
stractions and conventions.

Libraries of mathematical routines, often written in FOR-
TRAN, have survived with minimal changes for decades.
This is because math doesn’t change very quickly. The un-
derlying hardware, however, does. The LINPACK library,
written in the 1970s, was targeted at vector supercomputers
like those made by Cray. In the early 1990s, LINPACK was
supplanted by LAPACK, which targets modern cache-based
architectures. Even so, these libraries are among the most
intrinsically stable software ever written.

Everywhere else, software survives unchanged only be-
cause of our continued efforts. Batch data-processing soft-
ware written in COBOL still runs on mainframes because
the company has built layers of software and institutional
conventions around it. The original UNIX tools are useful for
data analysis only where we have avoided the use of bina-
ry formats or nested data representations like JSON or EDN.
Depending on your perspective, these sorts of efforts may be
pragmatic or decades-long examples of the sunk cost fallacy.

In either case, it is clear that vanishingly little software re-
tains value without continuous, sometimes drastic, change.
Given this, we should stop drawing comparisons between
software and civil engineering. A bridge is a solution to a
largely static problem; it may undergo maintenance, but
change is almost always accomplished by building a new
bridge. Software, on the other hand, is a solution to an ev-
er-changing problem.27

27.
All metaphors
relating to physical
construction are
fundamentally flawed.
For one, software has
no spatial constraints;
no matter how closely
we’ve packed our
software, we can
always add something
in between. But if
we must choose
a metaphor, city
planning is far better
than bridges. A city
is in constant flux,
too large to
understand in its
entirety, and its
residents will always
demand more than
they have. Anyone
wishing to pursue this
line of inquiry should
read Jane Jacob’s
Death and Life of
Great American Cities
and Kevin Lynch’s
Image of the City.

Indirection

89

To create software of lasting value, then, we must minimize
the effects of change wherever possible. The environment
for any software component includes the users, the problem
domain, and other software. We cannot control our users,
and we often have limited control over how our problem do-
main evolves. We can, however, control how changing one
software component affects the others.

90

Elements of Clojure

Systems of Modules
Whenever we change a piece of code, we risk invalidating
assumptions made elsewhere in our codebase. Our modules
succeed by minimizing how often this occurs. Even small
systems are too large to understand top to bottom, so we
cannot simply consider all the other code whenever we make
a change. We want to limit the unintended effects of our
changes, even if we don’t fully understand the environment.

There are two fundamental strategies for accomplishing this.
We can build a principled system, which has predictable re-
lationships between its modules. Alternately, we can build
an adaptable system, which has sparse and flexible relation-
ships between its modules.

A principled system minimizes internal indirection and is
usually structured as a hierarchy. The implementation of
each component is guided by the central design principles.
These principles, applied from the top down, allow each
component to make broader assumptions. This makes each
component smaller and often faster, since there are consis-
tent methods used throughout.

This gives the code a minimal quality, even a certain ele-
gance. In the words of Saint-Exupéry, there is nothing more
to take away. Hierarchies can also be learned gradually; we
can decompose from the top down, beginning at the root and
peeling away layers to reveal the underlying implementation.

These systems, however, are highly interdependent. If work
is split between children, each implicitly assumes the exis-
tence of all the others. They lean upon each other like a house
of cards. If even a single one is out of place, the entire system
can come crashing down.

Each piece of a principled system serves a single purpose.
If two such systems share a component, then neither can
shape it. The shared component must strike a balance, guid-
ed by its own design principles. Without a coherent principle
throughout, indirection forms. An interface is born.

A principled tower

Indirection

91

As components on both sides of the interface come and go,
the interface remains. The permanence of an interface en-
ables the surrounding code to change. It allows our systems
to adapt.

An adaptable system has a high degree of internal indirec-
tion and is usually structured as a graph.28 Each component
is purposefully blind to the internals of adjacent compo-
nents, which leads to redundancies. This makes each com-
ponent larger, and often less efficient.

A graph is a much more flexible model, but it resists incre-
mental decomposition. It has no clear root, leaves, or layers.
Without a predictable structure, exhaustive exploration is
the only way to discover where or how something is accom-
plished. There are no organizing principles, no commanding
heights from which we can perceive and control the system.

These approaches are contrasted in Christopher Alexan-
der’s Notes on the Synthesis of Form. In it, he discusses differ-
ent traditions around building homes, drawing a distinction
between what he calls selfconscious and unselfconscious
cultures.

An unselfconscious culture, he says, has no word for “ar-
chitect”; each person builds their own home. The design is
refined over generations, and construction is taught using
direct demonstration. While simple and sometimes crude,
they reflect the constraints and variation of their environ-
ment.

28.
The interplay between
the hierarchy and
graph is a recurring
theme in the works
of the post-modern
critical theorists Gilles
Deleuze and Felix
Guattari, notably
in their book A
Thousand Plateaus.
This is a challenging
book, not least
because of the lack
of shared vocabulary
with computer
science; they refer to
tree- like structures
as “arborescent” and
graph-like structures
as “rhizomatic”.
A determined reader,
however, will find it
rich and rewarding.

92

Elements of Clojure

In a selfconscious culture, the design and construction of
homes is a specialized task. It is taught in schools using ab-
stract principles. These designs are often complex and or-
nate, and they reflect the vision of the architect.

The structures of an unselfconscious culture are adaptable;
they reflect the present needs of the inhabitants. If an igloo
grows too warm, someone can poke a hole in the wall. When
it grows too cold, the hole can be filled in. There is a constant
awareness of the environment and constant adaptation as
it changes. Such structures tend to be only large enough to
hold a single family.

The structures of a selfconscious culture are principled;
they not meant to change. They may reflect their environ-
ment by building atop solid earth or by orienting the win-
dows north/south in warmer climates. Alternatively, they
may simply pour a concrete foundation and install air con-
ditioning. If the environment changes, the structure is hard-
ened against the change rather than adapting to it. Some
principled structures, like skyscrapers or stadiums, can
hold thousands of people.

Clojure is a mostly unprincipled language. Its few principles,
such as immutability, promote the creation of adaptable
software. Rich Hickey’s own definition of ‘simplicity,’ from
his talk Simple Made Easy, describes an adaptable system:
software components that are not entwined.

This suggests that our systems should be built from inde-
pendent components. We can create an ecosystem of func-
tions and modules, all separated by strong indirection, and
combine them as needed.

Indirection

93

But when an interface only serves a single purpose, indi-
rection is hard to maintain. An interface pulled in many di-
rections is intrinsically stable, but an interface pulled in a
single direction tends to shift. Over time, the code on either
side of the interface will grow interdependent. The interface
itself will become vestigial, serving only to mislead future
developers.

This is demonstrated by the mitochondrion, known to stu-
dents everywhere as “the powerhouse of the cell.” A few
billion years ago the mitochondrion was an independent or-
ganism, but within the stable environment of the cell, that
independence was an inefficiency. Today, it is unable to ex-
ist outside the cell and produces many times more energy
than it needs itself. It has become just another interdepen-
dent part of a principled whole.

Even if we could maintain this indirection, it’s not clear we’d
want to. Crossing an interface puts us in a new context, forc-
ing us to relearn our surroundings. If both sides of the inter-
face share a single purpose, this is an enormous cost with
no obvious benefit.

Principled components allow us to explore within a uniform
context without any need to reorient ourselves. This unifor-
mity, however, makes them fragile. They are constructed
towards a fixed purpose and cannot be easily reoriented.
We cannot shift the Arc de Triomphe without rebuilding the
streets and buildings that radiate outward from it. The core
assumptions are foundational, and even a small change in-
validates everything.

And so we do not want a system that is wholly principled. We
want a collection of principled components, built to be dis-
carded, separated by interfaces that are built to last.

An adaptable chain

94

Elements of Clojure

These systems, which are able to replace every part of them-
selves but still retain their fundamental character, are often
referred to as “complex adaptive systems.” They are pres-
ent everywhere in the world, from the human cell to global
markets.29

Consider the Monarch and Viceroy butterflies. The Monarch
butterfly is toxic and avoided by predators. The Viceroy but-
terfly is not toxic, but closely resembles the Monarch. Clear-
ly, the Viceroy assumes the existence of the Monarch, which
makes its existence precarious. If the Monarch were to dis-
appear, the Viceroy wouldn’t change its appearance to some
other inedible butterfly – it would be eaten out of existence.

It is the ecosystem, not the organism, that adapts to change.
If an organism makes an invalid assumption, it disappears
and its niche is filled by something else. These roles are fun-
gible because the organisms consume and emit the same
resources; they share a common interface.

29.
So far, researchers
have been able to
draw analogies
between a wide
variety of real-world
phenomena but
unable to describe
a common generative
mechanism that
connects them.
As such, the literature
around complexity is
interesting but only
indirectly applicable
to software.
Anyone wishing to go
deeper on this subject
should start with
Complex Adaptive
Systems by Miller
and Page.

Short-lived principled components separated by long-lived interfaces

Indirection

95

For an interface to disappear, every participant on one side
must disappear. A symbiotic relationship between two spe-
cies is relatively fragile; the extinction of either species will
render the relationship moot. The carbon-based building
blocks of life, however, are foundational to millions of spe-
cies and have persisted for billions of years. Likewise, the
REST protocol for our web application will vanish without
customers, but TCP and POSIX will likely last for centuries.

Where possible, we should avoid creating foundational in-
terfaces. If an interface only touches our own software, we
can learn from our design mistakes and move past them. In-
terfaces calcify when they are exposed to the world, which
can allow our mistakes to outlive us. If we must create a
foundational interface, we should first allow it to mature
within our own code.

We should build our software from principled components
wherever possible, separated by interfaces where neces-
sary. Modules that share common assumptions should live
in the same component, and modules with dissimilar as-
sumptions should be kept separate. This keeps the effects of
changes small and predictable.

If our problem domain is stable and uniform, it has little
need for indirection. Any domain, when poorly understood,
seems to fit this description. As an industry, we are biased
towards simple solutions born from incuriosity. What we
don’t know, we fill in with blind optimism.

Given this, Clojure’s opposing bias towards the adaptable
approach seems reasonable; it saves us from ourselves. But
we cannot find the right balance without a deep understand-
ing of our software, the environment in which it exists, and
what they both may become.

Names

Composition

Indirection

Idioms

98

Elements of Clojure

Composition
Composition is the combination of separate abstractions
to create a new abstraction. These abstractions, once com-
bined, begin to define each other’s environment. Through
composition, we create the context by which each individual
piece can be judged. It allows us to discuss specific trade-
offs, rather than the concept of a trade-off. Composition is
applied abstraction.

In the classic mathematical sense, composition is the com-
bination of functions, and most composition in Clojure does
involve functions. The ultimate goal of software composi-
tion, however, is not simply to define new functions but to
define processes that pull data from their environment,
transform that data, and push the result back into their en-
vironment.

A process has execution isolation (when it runs), has data
isolation (where it runs), and is sequential. It corresponds to,
and is named for, a process in early operating systems that
lacked support for threads. However, it can also describe
threads in a modern operating system, a chain of asynchro-
nous callbacks, or any other mechanism which shares these
properties.30

The process, as defined here, is the smallest unit of stand-
alone computation. If software does not perform all steps
(pull, transform, and push) at least once, it can only be use-
ful when combined with other software. Consider the UNIX
yes command, reproduced here:

(defn yes []

 (loop []

 (println "y")

 (recur)))

This utility neither pulls nor transforms data. It will simply
push an endlessly repeating stream of "y\n" to stdout un-

30.
Such mechanisms
include Erlang’s
processes, Carl
Hewitt’s actors,
and Smalltalk-72’s
objects, all of which
communicate via
asynchronous
message passing.

Composition

99

til the process is killed. This is useful when placed upstream
of another process with interactive prompts but useless by
itself.

Similarly, consider a function that reproduces the function-
ality of /dev/null:

(defn dev-null []

 (loop []

 (read-line)

 (recur)))

This utility endlessly pulls from stdin and then drops the
data on the floor. This is only helpful when an upstream pro-
cess has useful effects beyond what it pushes to stdout.

The cat command pulls the contents of one or more files
and pushes them to stdout without any intermediate
transformation:

(require '[clojure.java.io :as io])

(defn cat [& filenames]

 (doseq [f filenames]

 (doseq [l (->> f io/reader line-seq)]

 (println l))))

If we place this upstream of a process that only pulls from
stdin, that process can now indirectly access the filesys-
tem. Moving data is part of any nontrivial computation, but
not very useful on its own. We can use cat to view the con-
tents of a file, but only when it’s fed into a teletype emulator.

A process that doesn’t produce data is obviously of limited
use. A process that doesn’t transform data is only useful
where it makes data available to other processes. But what
about a process that doesn’t consume data?

100

Elements of Clojure

(defn yes [expletive]

 (loop []

 (println expletive)

 (recur)))

This version of yes is parameterized and could be seen
as transforming expletive into an infinite recurrence of
itself. However, this infinite stream is not particularly in-
teresting; once we’ve seen one line, we’ve seen them all. In
general, the output of a process is only as interesting as its
inputs.31 Where the data pulled in by a process is eventually
available, parameters must be immediately available. When
using our process in isolation, the parameters are limited to
the information literally at our fingertips. If we are the only
source of information, our software can only tell us varia-
tions on what we already know.

Software applications comprise one or more processes. The
building blocks for our software may not constitute a full
process; they’re often more useful when they don’t. But to
create software that is useful on its own, we must construct
whole processes, and we often combine those processes
into a larger system.

31.
There are a few
exceptions to this rule,
largely in the domain
of mathematics.
A program that
calculates the
digits of pi takes no
inputs but can emit
an endless stream
of data. Likewise,
pseudorandom
number generators
or visualizations of
fractal geometry
can generate large
amounts of data given
a small input.
This data, however, is
only useful when fed
into other processes.

Composition

101

32.
A more common
term for this is ‘side
effect.’ That term
implies that our effects
are incidental and
avoidable, but truly
they are a necessary
component of our
software.

A Unit of Computation
Processes are a ubiquitous concept dating back to the earliest
days of computing. It is the smallest piece of code which can be
understood on its own, in part because it does something use-
ful on its own, but also because it provides strong indirection
between itself and its environment. If we cannot understand
the system as a whole, we can at least understand it one pro-
cess at a time.

Processes provide (some) data isolation
A process can only access data that is globally visible or passed
in as a parameter. Once initialized, its universe is bounded and
fixed, consisting of both immutable values and mutable refer-
ences. Communication between processes is only possible via
shared references, and any change to such a reference is called
an effect.32 These references are often hidden behind an inter-
face, which provides structure around how and when effects
occur.

For a reference to be safely shared, we must be careful in our in-
teractions. Without coordination, simultaneous access can lead
to data inconsistencies or even permanent corruption. But even
if our shared data structure is thread-safe, updating the inter-
nal reference is rarely enough on its own. For our update to trig-
ger an action in another process, we must signal that an update
has occurred. This is why inter-process communication often
uses queues, which provide both thread-safety and signaling.

Mutability may be necessary at the edges of our processes, but
it should be avoided elsewhere. If we pass a mutable data struc-
ture into a function, we cannot prevent that function from shar-
ing it with another process, creating a new edge in our system.
Even if we know a particular function doesn’t touch another
process, that may change in the future. This implicit process
composition can make it near-impossible to reason about the
system as a whole. As a rule, we should only use internal mu-
table data structures in principled components, which have
predictable behavior and limited capacity for change.

102

Elements of Clojure

Processes provide (some) execution isolation
Processes run sequentially; each operation is executed in
order, one at a time. When reasoning about a process, we
rely heavily on the operations having a deterministic order.
When we invoke a function, we place its operations ahead of
all the others. Within our process, function invocation has
an immediate effect.

The same cannot be said of inter-process communication.
We can update a shared reference, and even signal that the
reference was updated, but that is the extent of our power.
We cannot control when or how another process will react to
that new information.

But while processes cannot control one another, they are still
interdependent. To pull the contents of a file into our process,
we must request it from the operating system and then wait
for the signal that it’s available. A process cannot force us to
react to its effects, but by delaying the effects it can force us
to wait for them.

Like function invocation, by waiting for data we place its ar-
rival ahead of other operations. Unlike function invocation,
our process is a passive participant. When a process is ac-
tive, we can reason about it in isolation. When it’s paused, we
must consider the surrounding processes that will allow it
to continue.

To read a file, we must traverse a cache, an I/O scheduler
which prioritizes and deduplicates pending reads, a control-
ler on the physical disk, and finally the storage medium itself.
These are directly responsible for fetching data, but other
processes using the file system may be indirectly responsi-
ble for delays. Holding the entire system in our head can be
difficult at best.

This is only necessary, however, when our process waits too
long. If we never wait longer than we’re willing to, there’s no
need to consider the system as a whole. The simplest way to
achieve this is to have low expectations. Modern hardware
is far more capable than modern software would suggest,

Composition

103

but most of us choose to be content with the performance
we have. This can be a helpful strategy for coping with the
complexity of modern systems.

A complementary strategy is to define timeouts, which pre-
vent a process from ever waiting too long. If a timeout elaps-
es, we don’t try to understand why; we just try to recover. As
long as timeouts don’t occur too often, it’s much simpler to
let a system sometimes fail than to chase down every unex-
plained pause.

These strategies allow us to consider each process in iso-
lation, so long as performance isn’t a primary concern and
some failures are acceptable. In more stringent domains we
must fight to keep the system as simple as possible, so that it
can fit in our head. Any system that exceeds our understand-
ing will inevitably grow a bit slow and flaky, no matter what
the design specification says.

Example: a REPL

(defn repl []

 (loop []

 (-> (read)

 eval

 print)

 (recur)))

The REPL is a simple, but complete, process: it pulls in ex-
pressions via read, transforms them via eval, and pushes
the result out via print. Normally, it will spend most of its
time waiting on the result of read; the computer can per-
form the eval-print-loop steps much faster than we can type
in new expressions. However, it’s easy to craft an expression
which takes more time to eval than it did to type:

(print (eval '(reduce + (range 1e9))))

104

Elements of Clojure

Likewise, we can turn print into our bottleneck:

(print (eval '(range 1e9)))

Since range returns a lazy sequence, eval will return im-
mediately, leaving print to push a billion numbers to what-
ever process is responsible for displaying the result. Since
print can likely send numbers faster than they can be dis-
played, print will spend most of its time waiting for a signal
that the downstream process can accept more data.

While it’s convenient to talk about “pulling” and “pushing”
data, both operations tend to require bidirectional com-
munication. To pull data, a process must send information
about what data it wishes to receive, or at least signal that
it is ready to receive more information over a pre-existing
channel. To push data, a process must confirm that down-
stream processes have the capacity to process this new data.
There are exceptions where the data is of a predetermined
type and bounded in size, but such guarantees are rare in
practice.

Example: a web service

(defn handler [request]

 (-> request

 request->query

 query-db!

 result->response))

This function implements the API specified by the Ring
specification, transforming data representing an HTTP re-
quest into data representing an HTTP response. Our han-
dler is a parameter passed into a larger process, which is
responsible for pulling in the encoded request and pushing
out an encoded response. But these are not the only edges in
our process; handler also pulls data from an external data-
base. Our process follows these steps in sequence:

Composition

105

• pull in an encoded request from the client

• transform the encoded request into a Ring request

• the handler is invoked

• transform the Ring request into a database query

• pull the result of that query from the database

• transform the database result into a Ring response

• the handler returns

• transform the Ring response into an encoded response

• push the encoded response to the client

A Ring webserver is a framework; it invokes our code rather
than being invoked by it. This frees us from having to con-
sider the complexity of effects when writing our code, but
it also makes it more difficult to understand what our soft-
ware is doing in production. To reason about the operational
properties of our code, we must understand the process that
surrounds it.

Example: a frontend application

(on-click refresh-button

 (fn []

 (query-service

 (fn [data]

 (update-dom data)))))

This code registers a callback on a “refresh” button. Each
click will fire off a request, and the response will be used to
update the data shown in the browser. If we click the button
multiple times, it will fire off multiple requests, which may
execute concurrently. This does not represent a single pro-
cess, but rather a mechanism that spawns processes. Each
time the callback is triggered a process starts, executes
once, and exits.

106

Elements of Clojure

Since there’s no real value in allowing concurrent refresh
operations, we might decide to preclude them:

(on-click refresh-button

 (fn []

 (disable! refresh-button)

 (query-service

 (fn [data]

 (update-dom data)

 (enable! refresh-button)))))

This is a process because a second click cannot occur until
the first has been fully handled. In a process, we have to de-
cide what to do when our environment demands more than
we can provide. Here, we’ve signaled to the environment
(our user) that we will ignore any clicks while a request is
still in flight.

To create a fully robust process, we must also decide what to
do when the backend service is unavailable. We might retry
the request, either indefinitely or up to a maximum number
of retries. We might perform our retries at fixed intervals,
or increase the intervals using exponential backoff. Alter-
natively, we might simply display a message to the user that
the refresh failed.

These strategies, describing what our process will do when
its environment provides too much or too little, are called an
execution model. A process with a well-defined execution
model can be safely considered in isolation.

Queues by themselves do not provide isolation. Queues cou-
ple the execution of processes and, by default, allow one pro-
cess to block the other indefinitely. If neither places limits
on how long it will wait to push or pull data, they cannot be
understood separately. Such processes share a single exe-
cution model.

Composition

107

In some cases this is unavoidable. Limits are tied to the
specifics of our application and do not generalize. Since the
components of our file system sit beneath many such appli-
cations, they cannot define their own timeouts. All they can
do is wait indefinitely and rely on someone else to make the
hard choices. Those choices, however, must be made some-
where, and if we allow an execution model to span too many
processes, it will quickly exceed our understanding.

108

Elements of Clojure

Building a Process
A process is composed of pull, push, and transform phases.
These phases should be kept separate until the last possible
moment. Consider this parameterized REPL:

(defn repl [read eval print]

 (loop []

 (->> (read)

 eval

 print)

 (recur)))

The source from which we read, the sink to which we print,
and our evaluation strategy can all be understood in isola-
tion. There would be no purpose to asking for a read-eval
or eval-print parameter. Their composition is only useful
at the apex of our process definition.

These phases are separable because they serve different
roles. The push and pull phases are operational: they deal
with code in motion and define the limits of our process. The
transform phase is functional: it deals with code at rest and
defines the purpose of our process. The push and pull phases
enforce invariants that can only be designed and judged giv-
en a specific context. The transform phase, wrapped in those
invariants, can safely ignore much of that context.

Consider Clojure’s sort function. According to its docu-
mentation, it returns the elements of the input collection in
sorted order, but this is only partially true. If we try to run
(sort (range 1e12)), it will throw an OutOfMemoryEx-
ception. Since sort only works if certain conventions are
followed, we must consider the context in which it’s used.

Contrast this with the GNU sort utility. It explicitly protects
against this failure mode by pulling in chunks of data, sort-
ing each chunk, and spilling the result to disk. Once the in-
put is exhausted, it will merge-sort all the chunks together,
pushing the result downstream.33

33.
Of course, this still
leaves open the
possibility that we
might run out of
disk space, but that
resource is at least
several orders of
magnitude less scarce.

Composition

109

Both examples use the same sorting mechanism, but only
GNU’s sort is explicit about what surrounds it. If we fail to
do the same when using Clojure’s sort, we create a leaky
abstraction; our implicit assumptions become everyone’s
concern.

Leaky abstractions are fine, so long as they sit within a prin-
cipled component that shares their assumptions. If our code
is meant to load a configuration file, for instance, we may
slurp it into memory rather than read the file incremen-
tally. Once we’ve done that, there’s no real harm in calling
Clojure’s sort; our code is already fragile in the face of over-
sized inputs.

But a principled component cannot span multiple process-
es; principled components rely on weak internal indirection,
and process boundaries provide strong indirection. Leaky
abstractions may be fine in the right context, but leaky pro-
cesses are always dangerous. Our processes may be larger
than GNU’s sort, but at the edges we must always enforce
the assumptions within.

Pulling Data
The pull phase acquires data from outside the process and
verifies that it is properly shaped and sized. It also defines
what happens when the data is invalid or unavailable.

All too often, however, we focus on acquiring data and ig-
nore the rest. Consider this function, which yields a lazy se-
quence over the lines of a text file:

(require '[clojure.java.io :as io])

(defn file-line-seq [filename]

 (->> filename

 io/reader

 line-seq))

110

Elements of Clojure

By simply passing this along to our transform phase, we ig-
nore a number of failure modes:

• The size of each line is unbounded, except by the fact that a
String cannot contain more than two billion characters. If
we don’t have four gigabytes of free memory each time we
call next on our seq, we risk an OutOfMemoryException.

• If the text file contains encoded data such as JSON or EDN,
the encoding may be malformed.

• Any time we touch the file, an IOException may be thrown.

By ignoring these scenarios, we make them fatal. Our pro-
cess will simply end, possibly logging an error, forcing the
surrounding processes to pick up the pieces.

Sometimes this is fine. If a configuration file is excessively
large, malformed, or unavailable, all we can do is fail and
wait for someone to debug the issue. But configuration files
are unique inputs in many ways:

• Changes to the configuration data and the code that con-
sumes it are often reviewed by the same people.

• As ancillary data, a configuration format that is fundamen-
tally limited in both size and shape doesn’t also limit the
usefulness of a process.

• Configuration data is read during a deployment process,
when there are people on hand to detect and respond to
failures.

Most input data is not inherently limited in its origin, shape,
and size. Most new input data does not have its effects care-
fully monitored by a trained engineer. In most cases, we
must make our processes intrinsically robust.34

In a robust process, the pull phase should invoke the trans-
form phase. This gives us greater flexibility in how we re-
spond to errors; different scenarios may call for different
kinds of transforms. If our pull phase simply yields a la-
zy-seq, this relationship is inverted, and our control flow is
greatly constrained.

34.
Alternatively, we can
make our systems
intrinsically robust to
the loss of processes,
using something
like Erlang’s OTP
framework.
This approach,
however, requires
significant support
at the language or
runtime level to ensure
errors are captured
and propagated.
Since no such
mechanism currently
exists in the Clojure
ecosystem, we
will not spend any
time exploring this
approach.

Composition

111

More generally, by consuming a lazy-seq that performs
effects, we’re forced to make operational decisions. When
an error occurs inside next, we have three choices: we can
retry, truncate the seq, or allow the exception to leak out.
Since we can’t retry forever, this can only be a supplementa-
ry solution. Truncation, at best, allows us to infer that some-
thing failed, and the conflation of all possible error modes is
an operational decision in itself. And if we allow exceptions
to bubble out, we must confront them directly.

Our transform phase is, by definition, code free from oper-
ational concerns. If we simply compose over lazy effects, we
allow our pull phase to encompass the core of our process.
In such a process, nothing can be considered in isolation.

Transforming Data
There are only three things we can do with data. We can
accrete data by adding it to an existing collection, reduce
data by discarding information from an existing collection,
or reshape data by placing it in a different kind of collection.

We accrete data when we don’t know enough to do anything
else or when we want to work with a larger batch of data.

We reduce data when inputs that yield the same output are
interchangeable. When we compute a sum, we imply that
[3 3], [1 2 3], and [6] look the same to us. When we look up
:callisto in a map, we imply that {:callisto 1, :io 3}
and {:callisto 1, :europa 5} aren’t meaningfully dif-
ferent. This is abstraction; we are treating different values
as equivalent.

All the lessons of the previous chapter apply here. Data an-
alysts tend to avoid simplistic metrics like mean and vari-
ance because datasets that intersect on these metrics can
have important differences. The reduction of data requires
more care than the rest of our software; it contributes most
of the value and most of the risk.

112

Elements of Clojure

Lastly, we reshape data when we want to make it easi-
er to accrete and reduce. When we store large amounts of
data, we prefer a database to a collection of flat files, even
though both allow the same fundamental operations. This
is because the database gives us random access to the data,
which in most cases matters a great deal. Reshaping is not
abstraction, because it is motivated by differences that do
matter.

The study of data structures and algorithms is the study of
the strengths and weaknesses of different data shapes. The
importance of this is often overstated; in most cases, it suf-
fices to understand the tradeoffs of Clojure’s core data struc-
tures. It is not, however, something that can be ignored.

Data should never be implicitly reshaped. If our function
needs a set, it should demand a set. This allows others to
judge whether our code is a good fit for their problem and
prevents pathological situations where a collection is re-
shaped repeatedly rather than once.

We should also try to keep our accretions and reductions
separate. Sometimes this is impossible; adding values to a
set both accretes elements and loses information about or-
dering and duplicate values. But if they are separable, we
should expose them as pieces to be composed, rather than
as an indivisible unit.

Pushing Data
The output of the transform phase is not just data, but rath-
er a descriptor of the effects that the process should per-
form. Most often, this is a description of what data should be
pushed to other processes and how.35 The push phase acts
upon that descriptor.

In the simplest case, the descriptor is only the data that
should be pushed. When we pass "hello world!" to
println, we are giving a literal description of what println
should write to stdout. Even for more complex effects, this

35.
A descriptor may also
describe a pull effect,
such as an HTTP GET
request, but the design
considerations for
both are largely the
same.

Composition

113

is still true:

{:url "http://example.com"

 :method :post

 :body "hello world!"}

This is not a literal description of an encoded HTTP request,
but there is a direct correspondence between each part of
this map and the encoded request. However, unlike print-
ln, a typical HTTP client library allows us to also specify
how the request is made. This tells the client that any 3XX re-
direct responses should be automatically followed, so long
as the chain of redirects isn’t too long:

{:url "http://example.com"

 :method :post

 :body "hello world!"

 :follow-redirects? true

 :max-redirects 99}

The meaning of each field in this descriptor may seem
self-explanatory, but we should not fool ourselves into
thinking our descriptor has well-defined semantics. Data
is just data; it doesn’t have intrinsic meaning. The seman-
tics of our data are defined by the effects it produces when
passed into our functions. These effects should be predict-
able whenever possible, but data cannot prevent itself from
being interpreted in surprising ways.

The push phase begins wherever our functions perform ef-
fects. Put another way, it begins wherever the meaning of
our data is defined. Sometimes this is a straightforward ex-
ecution of a descriptor:

(println "hello world!")

It’s sometimes useful, however, to close over the descriptor
and return a function which can be invoked at our leisure:

114

Elements of Clojure

(defn printer [s]

 (fn []

 (println s)))

We cannot introspect on a printer; to know what it does,
we have to invoke it and see what happens. We cannot alter
what’s printed, only what comes before or after:

(defn prepend [printer prefix]

 (fn []

 (println prefix)

 (printer)))

(defn append [printer suffix]

 (fn []

 (printer)

 (println suffix)))

A function cannot be reduced or reshaped; it can only ac-
crete. By exchanging a string for a printer, we gain seman-
tics but lose almost everything else. We should seek to delay
this as long as possible.36

A process is composed of operational phases at the edg-
es and a functional phase in the middle. The operational
phases guard against the pathological behaviors found in
production; they interact with the environment and enforce
invariants on how it can affect the process. Unless we are
very good at predicting and simulating these pathologies,
the only true test is to deploy them and see what happens.

36.
The effects of some
functions can be
altered using dynamic
state; the println
function, for instance,
can be redirected
by binding a new
Writer to *out*.
This is only necessary,
however, when
we’ve discarded our
data prematurely.
Wherever possible,
we should alter our
effects by altering their
descriptor.

Composition

115

But if they’re well crafted, these operational phases allow
us to understand and test the functional phase in isolation.
This plays to the strengths of Clojure and its REPL-driven
development process. We should try to keep most of our
code in the middle and as little as possible at the edges.

Unfortunately, it can be easy to lose track of where we are.
We have no way to know if a function or lazy-seq performs
effects, which makes it easy for them to leak into the func-
tional core of a process. It can be helpful to keep the oper-
ational and functional phases in separate namespaces. By
only allowing functional namespaces to reference other
functional namespaces, we guard against the inward creep
of operational concerns.

116

Elements of Clojure

Composing Processes
For many applications, a single process does not suffice.
The application may require separate concurrently operat-
ing parts, or it may be easier to understand when structured
that way. To accomplish this, we compose processes into a
larger system. The graph describing the set of active pro-
cesses and the relationships between them is the topology
of our system.

A process is a mostly opaque thing. We cannot directly alter
it or see inside it. All we can do is share data and wait for it to
do the same. This means that, unlike most things in Clojure,
processes are not values. We can only refer to them through
a layer of indirection, using a process identifier, or commu-
nicate with them via a channel.

In a static process topology, channels usually suffice. Con-
sider a simple bash pipeline:

cat moons | grep 'callisto' | less

This pushes the contents of the moons file into grep, which
filters out the lines containing ‘callisto’ and pushes them
along to less, which pushes them to the terminal. Commu-
nication in this pipeline is anonymous and externally con-
figured. No one knows who their neighbors are; they just
interact with the stdin and stdout channels they were
initialized with.

This approach, however, is only possible if our system never
changes. If we want to create new channels, we’ll need some
way to identify processes in our system. Unique identifiers,
however, are only possible if our processes never die. More
often, our identifiers are connected to processes through a
layer of indirection. This identifier is then mapped onto a
specific process via resolution.

The most familiar example of this is DNS resolution, which
maps domain names onto IP addresses. DNS provides a one-
to-many mapping between domain names and IP addresses,

Composition

117

allowing for basic load balancing and failover behavior. This
is true of most resolution mechanisms designed for larger
systems. In practice, there is little difference between reso-
lution and discovery, which fetches a list of processes able
to provide a particular service.

It’s often useful to create a router, which provides indirec-
tion by exposing a single channel and distributing the data
on that channel across multiple processes. This pattern
is ubiquitous at every level of real-world systems. Even a
thread pool is a router; functions are placed on a shared
queue and distributed to threads which execute them.

Beyond these basic concepts, it’s difficult to describe pro-
cess composition in the abstract. Processes may share a
common structure, but system topologies vary widely de-
pending on the application. A taxonomy of system design
patterns is beyond the scope of this book.

But if we examine the messages between processes, one last
pattern emerges: most data pushed to another process is
a command describing an effect they must perform. Often
this command is passed along a chain of processes in a va-
riety of forms until it arrives at a process where the effect
can realized.

When we call (println "hello world!"), the encoded
bytes of our string are pushed from process to process until
they arrive in a desktop application. In that application, the
string is rendered into a graphical representation of itself.
That representation is then pushed to the graphics driver,
which passes it along to the graphics hardware, which final-
ly renders it to our display.

Likewise, when we make an HTTP POST request, our goal
is not merely to send the bytes of our request to another
machine; we want our request to be interpreted by that ma-
chine and acted upon. Often this requires that our request,
or some variation of it, be forwarded to other machines we
cannot directly access.

118

Elements of Clojure

The proximate goal of any push is communication, but the
ultimate goal is the completion of a task. A task begins
when a command enters our system. It might be started by
a keystroke, a packet from the network, or the creation of
the system. A task ends when the consequences of an effect
are uncertain. We can display text on a screen, but we can’t
dictate how the user will respond; we can write a value to the
database, but we can’t dictate if it will ever be read.

It is useful and often necessary for the completion of a task
to be acknowledged back up the chain of processes that
propagated the command. This is because processes and
the channels that connect them can be unreliable. Incom-
plete tasks must be remembered somewhere within a sys-
tem, so that if no acknowledgement is forthcoming, they can
be retried or reported as failed. This state should exist in a
single place at the edge of the system, so that other process-
es can safely forget a command once they’ve passed it along.

The formal mechanism by which we accomplish and ac-
knowledge tasks is called a protocol. Communication pro-
tocols like TCP and HTTP dictate the mechanism and fail-
ure modes for communication across a single edge of our
system topology. When designing a system, we must do the
same for performing tasks across our entire system. The de-
sign of these system-level protocols are, again, beyond the
scope of this book.37

A task ends where the consequences of an effect become un-
certain, but that is also where the value of a system begins.
Displaying text or persisting data are necessary elements
of building a useful system, but they are not sufficient. Sys-
tems are not intrinsically useful; like all abstractions they
are judged with respect to their environment, which is in
constant flux.

37.
Anyone wishing to
learn more about the
inherent complexities
of distributed systems
should read Nancy
Lynch’s Distributed
Algorithms, which is
an extensive, if fairly
academic, survey of
the field.

Composition

119

This book cannot tell you if your software is useful. There
are no formulas to reduce our software down to an objective
measure of worth. It can, however, help you judge for your-
self. The ideas in this book are meant to provide a frame-
work into which you must contribute your own understand-
ing of your software and its environment.

We cannot solve software design, but we can reduce it to its
essential questions. Happy reduction.

